Brucella abortus negative serum (DAGF-114)

Nature
Native
Tag/Conjugate
Unconjugated
Alternative Names
Brucella abortus; B. abortus; Brucellosis
Procedure
None
Format
Lyophilized
Concentration
Batch dependent - please inquire should you have specific requirements.
Size
1ml
Preservative
None
Storage
Store at -20°C or lower. Avoid repeated freeze/thaw cycles
Antigen Description
In blood, the serum is the component that is neither a blood cell (serum does not contain white or red blood cells) nor a clotting factor; it is the blood plasma not including the fibrinogens. Serum includes all proteins not used in blood clotting (coagulation) and all the electrolytes, antibodies, antigens, hormones, and any exogenous substances (e.g., drugs and microorganisms). A study of serum is serology, and may also include proteomics. Serum is used in numerous diagnostic tests, as well as blood typing.
Keywords
Brucella abortus; B. abortus; Brucellosis; Serum

Citations


Have you cited DAGF-114 in a publication? Let us know and earn a reward for your research.

Related Products


Dog Serum (DAG124)
Pig Serum (DAG126)
Rabbit Serum (DAG138)

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Bileome: The bile acid metabolome of rat

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Authors: Gaikwad, Nilesh W.

Bile acids (BA) play a vital physiological role in vivo. They are not only detergent of dietary lipids and nutrients, but also important hormones or nutrient signaling molecules in metabolic regulation process. Recent studies have also shown BA involvement in various cancers and diseases such as Parkinson's and Alzheimer's and liver diseases. However, majority of the reported literature about BA is restricted to enterohepatic circulation. Hitherto, there has been no comprehensive study of the BA profile in all the major tissue and biofluids in rat has been reported. In this first bileomics study, BA profile of 14 different rat biological specimens (liver, serum, kidney, heart, stomach, ovary, mammary, uterus, small intestine, big intestine, spleen, brain, feces and urine) were studied by ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Here I report the comprehensive identification and measurements of bile acids, the bileome, in rat. PCA analysis show distinct separate clusters of tissues as well as biofluids based on BA composition profile. Furthermore, we found that BA profiles of the organs that are involved in enterohepatic circulation were different than the other organs. Most of BA in brain, spleen, heart, ovary, urine, feces and uterus were in the unamidated form, and LCA and MOCA are the most abundant BAs in these organs. Whereas, most of BAs in liver, serum, mammary, large intestine, small intestine, stomach and kidney existed in amidated form, and TCA and T-beta-MCA are primary BAs. Finally, first time, BAs are found and measured in kidney, heart, stomach, ovary, mammary, uterus, and spleen of rats. (C) 2020 Elsevier Inc. All rights reserved.

Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications

FOOD CHEMISTRY

Authors: Guo, Yahui; Amunyela, Helena T. N. N.; Cheng, Yuliang; Xie, Yunfei; Yu, Hang; Yao, Weirong; Li, Hung-Wing; Qian, He

For the past decades, the synthesis of metal nanoclusters has been a great interest for research, for their unique physicochemical properties and great contributions to the catalytic, electrical and biomedical applications. Protein-templated gold nanoclusters (AuNCs) is a kind of fluorescent nanomaterials with good solubility, excellent stability, biocompatibility, decent quantum yields and active groups (-COOH, -NH2) for facilitating modifications. Natural proteins are easily available, commercially affordable, diverse and multitudinous in animals, plants and foods, which provide a template pool for the exploration of AuNCs. This is one of the few reviews of specifically focusing on the natural protein-templated fluorescent AuNCs. The syntheses, properties and applications of different AuNCs were enumerated. Prospects were given on utilizing structure-modified proteins, bioactive enzymes, antibodies which should endow the AuNCs more favourable fluorescence performances and functional characteristics. The applications of AuNCs in analytical, biomedical and food sciences would be further heightened.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket