Human NPR1 blocking peptide (DAG-P0880)

Synthetic Human NPR1 blocking peptide for BL

Nature
Synthetic
Tag/Conjugate
Unconjugated
Sequence Similarities
Belongs to the adenylyl cyclase class-4/guanylyl cyclase family.Contains 1 guanylate cyclase domain.Contains 1 protein kinase domain.
Cellular Localization
Membrane.
Procedure
None
Format
Lyophilised
Preservative
None
Storage
Shipped at 4°C. After reconstitution store at -20℃. Avoid freeze / thaw cycles.
UniProt ID
Antigen Description
Guanylyl cyclases, catalyzing the production of cGMP from GTP, are classified as soluble and membrane forms (Garbers and Lowe, 1994 [PubMed 7982997]). The membrane guanylyl cyclases, often termed guanylyl cyclases A through F, form a family of cell-surface receptors with a similar topographic structure: an extracellular ligand-binding domain, a single membrane-spanning domain, and an intracellular region that contains a protein kinase-like domain and a cyclase catalytic domain. GC-A and GC-B function as receptors for natriuretic peptides; they are also referred to as atrial natriuretic peptide receptor A (NPR1) and type B (NPR2; MIM 108961). Also see NPR3 (MIM 108962), which encodes a protein with only the ligand-binding transmembrane and 37-amino acid cytoplasmic domains. NPR1 is a membrane-bound guanylate cyclase that serves as the receptor for both atrial and brain natriuretic peptides (ANP (MIM 108780) and BNP (MIM 600295), respectively).[supplied by OMIM, May 2009]
Function
ATP binding; G-protein coupled peptide receptor activity; GTP binding; guanylate cyclase activity; hormone binding; natriuretic peptide receptor activity; peptide hormone binding; protein kinase activity; protein kinase binding;
Synonyms
NPR1; natriuretic peptide receptor 1; ANPa; NPRA; ANPRA; GUC2A; GUCY2A; atrial natriuretic peptide receptor 1; GC-A; ANP-A; NPR-A; ANPR-A; guanylate cyclase A; natriuretic peptide receptor A; atrionatriuretic peptide receptor A; natriuretic peptide A type receptor; atrial natriuretic peptide receptor type A; natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor A);

Citations


Have you cited DAG-P0880 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity

PLANT AND CELL PHYSIOLOGY

Authors: Johnson, Kaeli C. M.; Xia, Shitou; Feng, Xiaoqi; Li, Xin

SNC1 (SUPPRESSOR OF NPR1, CONSTITUTIVE 1) is one of a suite of intracellular Arabidopsis NOD-like receptor (NLR) proteins which, upon activation, result in the induction of defense responses. However, the molecular mechanisms underlying NLR activation and the subsequent provocation of immune responses are only partially characterized. To identify negative regulators of NLR-mediated immunity, a forward genetic screen was undertaken to search for enhancers of the dwarf, autoimmune gain-of-function snc1 mutant. To avoid lethality resulting from severe dwarfism, the screen was conducted using mos4 (modifier of snc1, 4) snc1 plants, which display wild-type-like morphology and resistance. M-2 progeny were screened for mutant, snc1-enhancing (muse) mutants displaying a reversion to snc1-like phenotypes. The muse9 mos4 snc1 triple mutant was found to exhibit dwarf morphology, elevated expression of the pPR2-GUS defense marker reporter gene and enhanced resistance to the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Via map-based cloning and Illumina sequencing, it was determined that the muse9 mutation is in the gene encoding the SWI/SNF chromatin remodeler SYD (SPLAYED), and was thus renamed syd-10. The syd-10 single mutant has no observable alteration from wild-type-like resistance, although the syd-4 T-DNA insertion allele displays enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Transcription of SNC1 is increased in both syd-4 and syd-10. These data suggest that SYD plays a subtle, specific role in the regulation of SNC1 expression and SNC1-mediated immunity. SYD may work with other proteins at the chromatin level to repress SNC1 transcription; such regulation is important for fine-tuning the expression of NLR-encoding genes to prevent unpropitious autoimmunity.

Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function

PHYSIOLOGICAL GENOMICS

Authors: Pandey, Kailash N.

Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and genetargeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket