Human GGH (Gamma-glutamyl hydrolase) ELISA Kit (DEIA-FN543)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
serum, plasma, cell culture supernatants, tissue homogenate
Species Reactivity
Human
Intended Use
For quantitative detection of Human GGH (Gamma-glutamyl hydrolase) in serum, plasma, tissue homogenates and other biological fluids.
Contents of Kit
1. 96-well strip plate (Dismountable), 1 plate
2. Lyophilized Standard, 2 vials
3. Sample/Standard dilution buffer, 20 mL
4. Biotin-detection antibody (Concentrated), 120 uL
5. Antibody dilution buffer, 10 mL
6. HRP-Streptavidin Conjugate(SABC), 120 uL
7. SABC dilution buffer, 10 mL
8. TMB substrate, 10 mL
9. Stop solution, 10 mL
10. Wash buffer (25X), 30 mL
11. Plate Sealer, 5 pieces
12. Product Manual, 1 copy
Storage
Store the unopened product at 2 - 8 °C. Do not use past expiration date.
Precision
Intra-Assay: CV<8%
Inter-Assay: CV<10%
Detection Range
0.469-30 ng/mL
Sensitivity
0.281 ng/mL
Standard Curve

Citations


Have you cited DEIA-FN543 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Deregulation of folate pathway gene expression correlates with poor prognosis in acute leukemia

ONCOLOGY LETTERS

Authors: Organista-Nava, Jorge; Gomez-Gomez, Yazmin; Del Moral-Hernandez, Oscar; Illades-Aguiar, Berenice; Gomez-Santamaria, Jazmin; Rivera-Ramirez, Ana Bertha; Saavedra-Herrera, Monica Virginia; Jimenez-Lopez, Marco Antonio; Leyva-Vazquez, Marco Antonio

The present study analyzed the mRNA expression levels of genes involved in the transport and metabolism of methotrexate (MTX) (RFC1, ABCC1, ABCB1, GGH, FPGS, ATIC, TS, MTHFR, MTRR, MS and MTHFD1) in patients with acute leukemia (AL). The expression levels of the examined genes were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in patients with AL (ALL:50/AML:19) and 66 healthy individuals. The mRNA expression levels of RFC1, MS, MTRR, MTHFR and ABCB1 were decreased (P<0.05), while those of GGH, FPGS, TS and MTHFD1 (P<0.05) were overexpressed in patients with AL. Patients with high mRNA levels of GGH (OR=4.28, 95% CI=1.29-14.14), TS (OR=7.14, 95% CI 1.84-27.81), MTHFR (OR=4.81, 95% CI=1.31-17.64), ABCB1 (OR=4.61, 95% CI=1.33-15.97) and ABCC1 (OR=5.50, 95% CI=1.12-27.06) had a higher chance of relapse. Interestingly, high mRNA levels of RFC1 are a protective factor in the risk of AL relapse (OR=0.22, 95% 0.06-0.80). The results of the present study indicated that deregulation of folate pathway gene expression is associated with poor prognosis in AL and that the expression levels of these markers could serve as novel molecular targets for the treatment of patients with AL.

Epigenetic regulation of human gamma-glutamyl hydrolase activity in acute lymphoblastic leukemia cells

AMERICAN JOURNAL OF HUMAN GENETICS

Authors: Cheng, Qing; Cheng, Cheng; Crews, Kristine R.; Ribeiro, Raul C.; Pui, Ching-Hon; Relling, Mary V.; Evans, William E.

gamma-Glutamyl hydrolase (GGH) catalyzes degradation of the active polyglutamates of natural folates and the antifolate methotrexate (MTX). We found that GGH activity is directly related to GGH messenger RNA expression in acute lymphoblastic leukemia (ALL) cells of patients with a wild-type germline GGH genotype. We identified two CpG islands (CpG1 and CpG2) in the region extending from the GGH promoter through the first exon and into intron 1 and showed that methylation of both CpG islands in the GGH promoter (seen in leukemia cells from similar to 15% of patients with non-hyperdiploid B-lineage ALL) is associated with significantly reduced GGH mRNA expression and catalytic activity and with significantly higher accumulation of MTX polyglutamates (MTXPG(4-7)) in ALL cells. Furthermore, methylation of CpG1 was leukemia-cell specific and had a pronounced effect on GGH expression, whereas methylation of CpG2 was common in leukemia cells and normal leukocytes but did not significantly alter GGH expression. These findings indicate that GGH activity in human leukemia cells is regulated by epigenetic changes, in addition to previously recognized genetic polymorphisms and karyotypic abnormalities, which collectively determine interindividual differences in GGH activity and influence MTXPG accumulation in leukemia cells.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket