Human anti-HCoV OC43 IgA ELISA Kit (DEIASL427)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Serum, plasma
Species Reactivity
Intended Use
The Human Anti-HCoV OC43 Virus Spike 1 [S1] IgA ELISA Kit is an immunoassay suitable for quantifying IgA antibody activity specific for S1 subunit of the spike protein of the HCoV OC43 virus, etiologic agent for the COVID-19 respiratory disease, in serum or plasma of vaccinated, immunized and/or infected hosts.
This immunoassay is suitable for:
o Determining immune status relative to non-immune controls;
o Assessing efficacy of vaccines, including dosage, adjuvantcy, route of immunization, and timing;
o Qualifying and standardizing vaccine batches & protocols.
The assay is for research use only (RUO) and is not intended nor validated for diagnosing HCoV OC43 virus disease. Reagents contain no virus or viral antigens.
The microtiter well plate and all other reagents, if unopened, are stable at 2-8 °C until the expiration date printed on the box label.
The HCoV OC43 S1-coated plate, anti-human IgA-HRP concentration, and Low NSB Sample Diluent are optimized to differentiate anti-HCoV OC43 S1 IgA from background (nonantibody) signal with human serum/plasma samples diluted 1:500.
General Description
Coronaviruses are a group of highly diverse RNA virus in the Coronaviridae family that are divided in 4 genera: alpha, beta, gamma and delta that cause disease varying from mild to severe in human and animals. Coronaviruses endemic to humans include the alphacoronavirus 229E and NL63 and betacoronaviruses OC43 and HKU1 that can cause influenza-like illness or pneumonia in humans. The genome of the coronavirus encodes 23 putative proteins including 4 major structural proteins: nucleocapsid [N protein], spike [S protein], membrane [M] and small envelope proteins [E]. The S protein is a glycoprotein essential for viral attachment to the host cell surface receptors and translocation into the infected cells; trimers of the S protein make up the spikes of the virus. For cell entry, S1 binds to a host receptor for viral attachment, and S2 undergoes dramatic structural changes to fuse the viral and host membranes. The sequences, structures, and membranefusion mechanisms of the S2 subunits are conserved among different coronavirus genera. However, the S1 subunits from different coronavirus genera share little or no significant sequence similarity.


Have you cited DEIASL427 in a publication? Let us know and earn a reward for your research.

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket