Nanotechnology Responses to COVID-19
ADVANCED HEALTHCARE MATERIALS
Authors: Ruiz-Hitzky, Eduardo; Darder, Margarita; Wicklein, Bernd; Ruiz-Garcia, Cristina; Martin-Sampedro, Raquel; del Real, Gustavo; Aranda, Pilar
Abstract
Researchers, engineers, and medical doctors are made aware of the severity of the COVID-19 infection and act quickly against the coronavirus SARS-CoV-2 using a large variety of tools. In this review, a panoply of nanoscience and nanotechnology approaches show how these disciplines can help the medical, technical, and scientific communities to fight the pandemic, highlighting the development of nanomaterials for detection, sanitation, therapies, and vaccines. SARS-CoV-2, which can be regarded as a functional core-shell nanoparticle (NP), can interact with diverse materials in its vicinity and remains attached for variable times while preserving its bioactivity. These studies are critical for the appropriate use of controlled disinfection systems. Other nanotechnological approaches are also decisive for the development of improved novel testing and diagnosis kits of coronavirus that are urgently required. Therapeutics are based on nanotechnology strategies as well and focus on antiviral drug design and on new nanoarchitectured vaccines. A brief overview on patented work is presented that emphasizes nanotechnology applied to coronaviruses. Finally, some comments are made on patents of the initial technological responses to COVID-19 that have already been put in practice.
Persistence ofSARS-CoV-2 nasopharyngeal swabPCRpositivity inCOVID-19 convalescent plasma donors
TRANSFUSION
Authors: Ikegami, Sachie; Benirschke, Robert; Flanagan, Tara; Tanna, Nicole; Klein, Tovah; Elue, Rita; Debosz, Patricia; Mallek, Jessica; Wright, Gregory; Guariglia, Perry; Kang, Jason; Gniadek, Thomas J.
Abstract
Background Nucleic acid persists after symptom resolution and infectivity for many viral infections via delayed clearance of nucleic acid fragments, non-infectious particles, or transmissible virus. For Coronavirus Disease 2019 (COVID-19), the relationship between nasopharyngeal (NP) swab positivity, the development of antibodies against COVID-19, and clinical history are unclear. Study design and methods Individuals who recovered from COVID-19 and volunteered to donate convalescent plasma (CP) were screened by NP swab PCR, responded to a questionnaire, and were tested for anti-COVID-19 antibodies. Results A proportion of 11.8% of individuals tested positive for SARS-CoV-2 by NP swab PCR greater than 14 days after the resolution of symptoms of active disease, including one donor who had asymptomatic disease and tested positive by NP swab 41 days after her initial diagnosis. Clinical history did not show a significant correlation with persistence of NP swab positivity. Also, NP swab positivity >14 days from symptom resolution did not correlate with anti-COVID-19 serology results. IgG anti-SARS-CoV-2 spike antibody strength correlated with hospitalization for COVID-19 using two different assays. Total anti-SARS-CoV-2 nucleocapsid antibody strength correlated with time from symptom resolution to sample collection and symptom duration. Conclusions SARS-CoV-2 nucleic acid is detectable long after the resolution of symptoms in a significant percentage of previously diagnosed individuals, which is important to consider when interpreting PCR swab results. Persistence of PCR positivity does not correlate with antibody strength or symptoms of COVID-19. If anti-spike antibody is used to assess CP potency, individuals who suffered severe COVID-19 disease symptoms may represent better donors.