Anti-SARS-CoV-2 Nucleoprotein monoclonal antibody (CABT-RMJ1)

Rabbit anti-SARS-CoV-2 Nucleoprotein monoclonal antibody for ELISA, LFIA


Host Species
Antibody Isotype
Species Reactivity
Recombinant SARS-CoV-2 Nucleoprotein


Application Notes
Suggested pair for sandwich ELISA (Capture -Detection):
*Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own experiment using appropriate negative and positive controls.


Alternative Names
SARS-CoV-2; coronavirus; SARS-CoV-2 NP; SARS-CoV-2 Nucleocapsid Protein


Have you cited CABT-RMJ1 in a publication? Let us know and earn a reward for your research.

Custom Antibody Labeling

We offer labeled antibodies using our catalogue antibody products and a broad range of intensely fluorescent dyes and labels including HRP, biotin, ALP, Alexa Fluor® dyes, DyLight® Fluor dyes, R-phycoerythrin (R-PE), at scales from less than 100 μg up to 1 g of IgG antibody. Learn More

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Breastfed 13 month-old infant of a mother with COVID-19 pneumonia: a case report


Authors: Yu, Yuanyuan; Li, Youjiang; Hu, Yingying; Li, Bin; Xu, Jian

Background In China, mothers with confirmed or suspected COVID-19 pneumonia are recommended to stop breastfeeding. However, the evidence to support this guidance is lacking. There have been relatively few cases reported about direct breastfeeding an infant by a mother with SARS-CoV-2 pneumonia. Therefore, it is necessary to assess the safety of breastfeeding and the possible protective effects of breast milk on infants. Case presentation This report analyzes the case of a mother who continued breastfeeding her 13 month-old child when both were diagnosed with confirmed COVID-19 pneumonia. We describe the clinical presentation, diagnosis, treatment, and outcome. The presence of SARS-CoV-2 nucleic acid was determined in maternal serum, breast milk, nasopharyngeal (NP) swabs and feces, and in infant serum, NP swabs and feces. IgM and IgG antibodies against SARS-CoV-2 were assessed in maternal serum and breast milk and in infant serum. SARS-CoV-2 nucleic acid was not detected in the breast milk, and antibodies against SARS-CoV-2 were detected in the mother's serum and milk. Conclusions The present case further confirms that the possibility of mother-to-child transmission about SARS-CoV-2 via breast milk alone was very small, and breast milk is safe for direct feeding of infants.

Targeting virus-host interaction by novel pyrimidine derivative: anin silicoapproach towards discovery of potential drug against COVID-19


Authors: Rane, Jitendra Subhash; Pandey, Preeti; Chatterjee, Aroni; Khan, Rajni; Kumar, Abhijeet; Prakash, Amresh; Ray, Shashikant

The entire human population over the globe is currently facing appalling conditions due to the spread of infection from coronavirus disease-2019 (COVID-19). The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present on the surface of the virion mediates the virus entry into the host cells and therefore is targeted by several scientific groups as a novel drug target site. The spike glycoprotein binds to the human angiotensin-converting enzyme-2 (hACE2) cell surface receptor abundantly expressed in lung tissues, and this binding phenomenon is a primary determinant of cell tropism and pathogenesis. The binding and internalization of the virus is the primary and most crucial step in the process of infection, and therefore the molecules targeting the inhibition of this process certainly hold a significant therapeutic value. Thus, we systematically applied the computational techniques to identify the plausible inhibitor from a chosen set of well characterized diaryl pyrimidine analogues which may disrupt interfacial interaction of spike glycoprotein (S) at the surface of hACE2. Using molecular docking, molecular dynamics (MD) simulation and binding free energy calculation, we have identified AP-NP (2-(2-amino-5-(naphthalen-2-yl)pyrimidin-4-yl)phenol), AP-3-OMe-Ph (2-(2-amino-5-(3-methoxyphenyl)pyrimidin-4-yl)phenol) and AP-4-Me-Ph (2-(2-amino-5-(p-tolyl) pyrimidin-4-yl)phenol) from a group of diaryl pyrimidine derivatives which appears to bind at the interface of the hACE2-S complex with low binding free energy. Thus, pyrimidine derivative AP-NP may be explored as an effective inhibitor for hACE2-S complex. Furthermore,in vitroandin vivostudies will strengthen the use of these inhibitors as suitable drug candidates against SARS-COV-2. Communicated by Ramaswamy H. Sarma

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket