Effects of high-intensity interval exercise under hyperoxia on HSP27 and oxidative stress responses
RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY
Authors: Kon, Michihiro; Taniguchi, Kosuke; Ebi, Yoshiko; Nakagaki, Kohei
Abstract
Hypoxia in working muscles during exercise may be associated with increased oxidative stress. Inhalation of hyperoxic gas diminishes the hypoxia within working muscles during exercise. Exposure to hyperoxia increases the expression of the antioxidant HSP27. We investigated the effects of acute high-intensity interval exercise (HIE) under hyperoxia on HSP27 levels and oxidative stress responses. Eight male subjects participated in two experiments: 1) normoxic HIE (NHIE) and 2) hyperoxic (60 % oxygen) HIE (HHIE). HIE consisted of four 30-s all-out cycling bouts with 4-min rest between bouts. Levels of serum oxidative stress markers (d-ROMs and LPO), HSP27, BAP, IL-6, and TNF-alpha significantly increased after both trials. The HIE-induced changes in d-ROMs, LPO, and HSP27 levels were significantly lower in the HHIE trial than in the NHIE trial. These findings suggest that inhaling hyperoxic gas during exercise might diminish oxidative stress induced by all-out HIE.
Fluorescent and electrochemical bimodal bioplatform for femtomolar detection of microRNAs in blood sera
SENSORS AND ACTUATORS B-CHEMICAL
Authors: Zayani, Riham; Rabti, Amal; Ben Aoun, Sami; Raouafi, Noureddine
Abstract
Noncoding RNAs such as miRNAs (miRs) are extensively researched as a novel class of cancer biomarkers. Herein, we describe a new method to sensitively determine the levels miRNAs via dual signal readout involving competitive hybridization between the miR-21 target and its biotinylated analog towards the same thiolated DNA probe attached onto the surface of gold nanoparticles. Hybridization of the DNA probes by the biotinylated miRs followed by conjugation with streptavidin-horseradish peroxidase, which catalyzes the oxidation of o-phenylenediamine into 2,3-diaminophenazine, allows detecting the target using fluorescence and electrochemistry. The two signals varied in a miRNA concentration-dependent manner. The bioplatform has limits of detection of 15 fmol/L and 19 fmol/L (0.15 and 0.19 attomol in 20 mu L, respectively). Furthermore, it displays a wide linear calibration range varying from 19 fmol/L to 100 pmol/L and 15 fmol/L to 100 pmol/L using voltamperometry and fluorescence, respectively. The bioplatform is able to provide very low detection limits without any DNA/RNA amplification step, an excellent selectivity toward non-complementary miRs along with an acceptable distinction with a single nucleotide mismatched sequence. Finally, the method was used to determine miR-21 expression levels in blood sera from patients diagnosed with breast cancer.