Porcine CLDN2 (Claudin-2) ELISA Kit (DEIA-FN287)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
serum, plasma, cell culture supernatants, tissue homogenate
Species Reactivity
Porcine
Intended Use
For quantitative detection of Porcine CLDN2 (Claudin-2) in serum, plasma, tissue homogenates and other biological fluids.
Contents of Kit
1. 96-well strip plate (Dismountable), 1 plate
2. Lyophilized Standard, 2 vials
3. Sample/Standard dilution buffer, 20 mL
4. Biotin-detection antibody (Concentrated), 120 uL
5. Antibody dilution buffer, 10 mL
6. HRP-Streptavidin Conjugate(SABC), 120 uL
7. SABC dilution buffer, 10 mL
8. TMB substrate, 10 mL
9. Stop solution, 10 mL
10. Wash buffer (25X), 30 mL
11. Plate Sealer, 5 pieces
12. Product Manual, 1 copy
Storage
Store the unopened product at 2 - 8 °C. Do not use past expiration date.
Precision
Intra-Assay: CV<8%
Inter-Assay: CV<10%
Detection Range
0.156-10 ng/mL
Sensitivity
0.094 ng/mL
Standard Curve

Citations


Have you cited DEIA-FN287 in a publication? Let us know and earn a reward for your research.

Related Products


Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


MORC4 is a novel breast cancer oncogene regulated by miR-193b-3p

JOURNAL OF CELLULAR BIOCHEMISTRY

Authors: Yang, Zi'ang; Zhuang, Qiulin; Hu, Guangfu; Geng, Shengkai

A better understanding of breast cancer pathogenesis would contribute to improved diagnosis and therapy and potentially decreased mortality rates. Here, we found that the MORC family CW-type zinc finger 4 (MORC4) overexpression in breast cancer tissues is associated with poor survival, and the short-interfering RNA knockdown of MORC4 suppresses the growth of breast cancer cells by promoting apoptosis. To investigate the mechanisms associated with MORC4 upregulation, microRNAs potentially targeting MORC4 were analyzed, with miR-193b-3p identified as the regulator and a negative correlation between miR-193b-3p and MORC4 expression determined in both breast cancer cell lines and tissues. Further analysis verified that MORC4 silencing did not affect miR-193b-3p expression, although altered miR-193b-3p expression attenuated MORC4 protein levels. Moreover, dual-luciferase reporter assays verified miR-193b-3p binding to the 3 ' untranslated region of MORC4. Furthermore, restoration of miR-193b-3p expression in breast cancer cells led to decreased growth and activation of apoptosis, which was consistent with results associated with MORC4 silencing in breast cancer cells. These results identified MORC4 as differentially expressed in breast cancer cells and tissues and its downregulation by miR-193b-3p, as well as its roles in regulating the growth of breast cancer cells via regulation of apoptosis. Our findings offer novel insights into potential mechanisms associated with breast cancer pathogenesis.

Mucosal gene transcription of ulcerative colitis in endoscopic remission

SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY

Authors: Arkteg, Christian Borde; Goll, Rasmus; Gundersen, Mona Dixon; Anderssen, Endre; Fenton, Christopher; Florholmen, Jon

Aim/Objective: Ulcerative colitis (UC) is a chronic inflammatory bowel disease. In UC, a wide range of criteria are used for disease remission, with few studies investigating the differences between disease remission and normal control groups. This paper compares known inflammatory and healing mediators in the mucosa of UC in clinical remission and normal controls, in order to better describe the remission state. Method: Mucosal biopsies from 72 study participants (48 UC and 24 normal controls) were included from the Advanced Study of Inflammatory Bowel Disease (ASIB Study), Arctic University of Norway, Norway. Clinical remission was defined as Mayo clinical score <= 2, with endoscopic subscores of <= 1. Targeted gene transcription analyses were performed using hydrolysis probes and SYBR-green. Results: Among the mucosal transcripts examined, 10 genes were regulated in remission versus normal controls, 8 upregulated pro-inflammatory transcripts (IL1B, IL33, TNF, TRAF1, CLDN2, STAT1, STAT3 and IL13Ra2) and 2 downregulated (pro-inflammatory TBX21 and anti-inflammatory TGFB1). In total, 14 transcripts were regulated between the investigated groups. Several master transcription factors for T-cell development were upregulated in patients with Mayo endoscopic score of 1 in comparison to 0. Conclusions: The mucosa of UC in clinical and endoscopic remission differs from normal mucosa, suggesting a remaining dysregulation of inflammatory and wound healing mechanisms.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket