A descriptive study of acute outbreaks of respiratory disease in Norwegian fattening pig herds
ACTA VETERINARIA SCANDINAVICA
Authors: Cohen, Liza Miriam; Grontvedt, Carl Andreas; Klem, Thea B.; Gulliksen, Stine Margrethe; Ranheim, Birgit; Nielsen, Jens Peter; Valheim, Mette; Kielland, Camilla
Abstract
Background Respiratory diseases are major health concerns in the pig production sector worldwide, contributing adversely to morbidity and mortality. Over the past years there was a rise in reported incidents of respiratory disease in pigs in Norway, despite population wide freedom from Aujeszky ' s disease, porcine reproductive and respiratory syndrome, porcine respiratory corona virus and enzootic pneumonia. The main objective of this study was to investigate acute outbreaks of respiratory disease in conventional Norwegian fattening pig herds. The study included 14 herds. In seven herds with reported outbreaks of acute respiratory disease, data on clinical signs was recorded and samples for laboratory examination were collected. Diagnostic protocols were compared by parallel analysis of clinically healthy pigs from seven non-outbreak herds. Results The most commonly reported clinical signs were sudden deaths and dyspnea. An average compartment morbidity of 60%, mortality of 4% and case fatality of 9% was recorded in the outbreak herds. Post-mortem examinations revealed acute lesions resembling porcine pleuropneumonia in all 28 pigs investigated from the outbreak herds and in 2 of the 24 (8%) pigs from the non-outbreak herds. Chronic lesions were recorded in another 2 pigs (8%) from the non-outbreak herds.Actinobacillus pleuropneumoniaeserovar 8 was isolated from lungs and/or pleura from all tested pigs (n = 28) in the outbreak herds, and from 2 out of 24 pigs (8%) in the non-outbreak herds, one pig with an acute and another pig with a chronic infection. No other significant bacterial findings were made. Seroconversion toA. pleuropneumoniaeantibodies was detectable in all outbreak herds analyzed and in six out of seven non-outbreak herds, but the risk ratio for seroconversion of individual pigs was higher (risk ratio 2.3 [1.50- 3.43 95% CI; P < 0.001]) in the outbreak herds. All herds tested positive for porcine circovirus type 2 and negative for influenza A viruses on oral fluid RT-qPCR. Conclusion The main etiological pathogen found during acute outbreaks of respiratory disease wasA. pleuropneumoniaeserovar 8. All pigs from outbreak herds had typical lesions of acute porcine pleuropneumonia, and onlyA. pleuropneumoniaeserovar 8 was identified. Co-infections were not found to impact disease development.
All-in-one microfluidic nucleic acid diagnosis system for multiplex detection of sexually transmitted pathogens directly from genitourinary secretions
TALANTA
Authors: Ye, Xin; Li, Yang; Wang, Lijuan; Fang, Xueen; Kong, Jilie
Abstract
Sexually transmitted infections are a serious public health concern worldwide, especially in young people. More than 30 pathogens can cause sexually transmitted diseases and co-infection often occurs. Therefore, the development of fast, low-cost and easy-to-use diagnostic screening methods is urgently needed for disease prevention and control. Herein, we established an all-in-one microfluidic nucleic acid diagnosis system, which could simultaneously detect Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum directly from genitourinary secretions with minimal manual manipulations. This system integrated nucleic acid extraction, amplification, and detection on a single microfluidic chip and could be automatically performed in an integrated detection device. This novel diagnosis tool showed good detection limits, stability (coefficient of variation <6%), specificity (no cross-reaction with 23 other pathogens for each target) and resistance to interference by other substances and the diagnostic efficacy was similar to that of PCR. The turnaround time was reduced to 50 min from sample to answer with automated testing steps. This novel diagnosis tool has the advantages of highly integrated, automated, sample-to-answer detection, and could thus replace the traditional method. This could significantly improve the prevention and control of sexually transmitted diseases.