Mouse Fbln2 (Fibulin-2) ELISA Kit (DEIA-FN477)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

serum, plasma, cell culture supernatants, tissue homogenate
Species Reactivity
Intended Use
For quantitative detection of Mouse Fbln2 (Fibulin-2) in serum, plasma, tissue homogenates and other biological fluids.
Contents of Kit
1. 96-well strip plate (Dismountable), 1 plate
2. Lyophilized Standard, 2 vials
3. Sample/Standard dilution buffer, 20 mL
4. Biotin-detection antibody (Concentrated), 120 uL
5. Antibody dilution buffer, 10 mL
6. HRP-Streptavidin Conjugate(SABC), 120 uL
7. SABC dilution buffer, 10 mL
8. TMB substrate, 10 mL
9. Stop solution, 10 mL
10. Wash buffer (25X), 30 mL
11. Plate Sealer, 5 pieces
12. Product Manual, 1 copy
Store the unopened product at 2 - 8 °C. Do not use past expiration date.
Intra-Assay: CV<8%
Inter-Assay: CV<10%
Detection Range
46.9-3000 pg/mL
28.125 pg/mL
Standard Curve


Have you cited DEIA-FN477 in a publication? Let us know and earn a reward for your research.

Related Products

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Prognostic Utility of FBLN2 Expression in Patients With Urothelial Carcinoma


Authors: Li, Wei-Ming; Chan, Ti-Chun; Huang, Steven Kuan-Hua; Wu, Wen-Jeng; Ke, Hung-Lung; Liang, Peir-In; Wei, Yu-Ching; Shiue, Yow-Ling; Li, Chien-Feng

Background: Abnormal extracellular matrix (ECM) remodeling plays an essential role in urothelial carcinoma (UC) invasiveness and metastasis. Focusing on the ECM structural constituent (GO: 0005201), we recognized a significant upregulation of the fibulin 2 gene (FBLN2) during UC progression in a published UC transcriptome (GSE31684). Thus, we aimed to investigate the roles of FBLN2 expression and its prognostic value in upper urinary tract UC (UTUC) and urinary bladder UC (UBUC) in our large, well-characterized cohort. Patients and Methods: Clinicopathological data and formalin-fixed paraffin-embedded UC tissues were analyzed retrospectively. We determined FBLN2 expression using immunohistochemical staining assessed by H-scores. FBLN2 expression correlated with clinicopathological features and patient outcomes, including metastasis-free survival (MFS) and disease-specific survival (DSS). Statistical analyses were performed using Pearson's chi-square test, Kaplan-Meier estimates of DSS and MFS, and the Cox proportional hazards model. We used Ingenuity Pathway Analysis (IPA) to clarify the functional significance of dysregulated FBLN2 in UC. Results: Data from 295 UBUC and 340 UTUC patients were available for the final evaluation. Pearson's chi-square test showed that high FBLN2 immunoexpression significantly correlated with adverse pathologic variables, such as advanced pathologic tumor stage, high histological grade, perineural invasion, vascular invasion, lymph node metastasis, and increased mitotic rate (all p < 0.05). Kaplan-Meier analysis demonstrated associations of high FBLN2 expression with worse DSS (p < 0.001) and MFS (p < 0.001). Furthermore, multivariate analysis identified high FBLN2 expression as an independent predictive risk factor for DSS [hazard ratio (HR) in UBUC, 2.306, p = 0.014; in UTUC, 2.561, p = 0.012] and MFS (HR in UBUC, 2.493, p = 0.001; in UTUC, 2.837, p = 0.001). IPA demonstrated that multiple signaling pathways were enriched, including the oxidative phosphorylation, mitochondrial dysfunction, and regulation of the epithelial-mesenchymal transition pathways. Conclusion: High FBLN2 expression was associated with adverse pathologic features and worse oncological outcomes and may serve as a prognostic biomarker for UC.

Exome-chip association analysis of intracranial aneurysms


Authors: van't Hof, Femke N. G.; Lai, Dongbing; van Setten, Jessica; Bots, Michiel L.; Vaartjes, Ilonca; Broderick, Joseph; Woo, Daniel; Foroud, Tatiana; Rinkel, Gabriel J. E.; de Bakker, Paul I. W.; Ruigrok, Ynte M.

ObjectiveTo investigate to what extent low-frequency genetic variants (with minor allele frequencies <5%) affect the risk of intracranial aneurysms (IAs).MethodsOne thousand fifty-six patients with IA and 2,097 population-based controls from the Netherlands were genotyped with the Illumina HumanExome BeadChip. After quality control (QC) of samples and single nucleotide variants (SNVs), we conducted a single variant analysis using the Fisher exact test. We also performed the variable threshold (VT) test and the sequence kernel association test (SKAT) at different minor allele count (MAC) thresholds of >5 and >0 to test the hypothesis that multiple variants within the same gene are associated with IA risk. Significant results were tested in a replication cohort of 425 patients with IA and 311 controls, and results of the 2 cohorts were combined in a meta-analysis.ResultsAfter QC, 995 patients with IA and 2,080 controls remained for further analysis. The single variant analysis comprising 46,534 SNVs did not identify significant loci at the genome-wide level. The gene-based tests showed a statistically significant association for fibulin 2 (FBLN2) (best p = 1 x 10(-6) for the VT test, MAC >5). Associations were not statistically significant in the independent but smaller replication cohort (p > 0.57) but became slightly stronger in a meta-analysis of the 2 cohorts (best p = 4.8 x 10(-7) for the SKAT, MAC >= 1).ConclusionGene-based tests indicated an association for FBLN2, a gene encoding an extracellular matrix protein implicated in vascular wall remodeling, but independent validation in larger cohorts is warranted. We did not identify any significant associations for single low-frequency genetic variants.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket