Human BCHE (Cholinesterase) ELISA Kit (DEIA-FN163)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

serum, plasma, cell culture supernatants, tissue homogenate
Species Reactivity
Intended Use
For quantitative detection of Human BCHE (Cholinesterase) in serum, plasma, tissue homogenates and other biological fluids.
Contents of Kit
1. 96-well strip plate (Dismountable), 1 plate
2. Lyophilized Standard, 2 vials
3. Sample/Standard dilution buffer, 20 mL
4. Biotin-detection antibody (Concentrated), 120 uL
5. Antibody dilution buffer, 10 mL
6. HRP-Streptavidin Conjugate(SABC), 120 uL
7. SABC dilution buffer, 10 mL
8. TMB substrate, 10 mL
9. Stop solution, 10 mL
10. Wash buffer (25X), 30 mL
11. Plate Sealer, 5 pieces
12. Product Manual, 1 copy
Store the unopened product at 2 - 8 °C. Do not use past expiration date.
Intra-Assay: CV<8%
Inter-Assay: CV<10%
Detection Range
0.625-40 ng/mL
0.375 ng/mL
Standard Curve


Have you cited DEIA-FN163 in a publication? Let us know and earn a reward for your research.

Related Products

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Computational insight into the anticholinesterase activities and electronic properties of physostigmine analogs


Authors: Adeniyi, Adebayo A.; Conradie, Jeanet

Aim: Alzheimer's disease (AD) is known to be the major cause of dementia among the elderly. The structural properties and binding interactions of the AD drug physostigmine (-)-phy, and its analogues (-)-hex and (-)-phe and (+)-phe, were examined, as well as their impact on the conformational changes of two different AD target enzymes AChE and BChE. Materials & methods: The conformational changes were studied using molecular dynamics and structural properties using Quantum mechanics. Results & conclusions: The binding free energy (Delta Gbind) and the change in the free energy surface (FES) computed from the funnel metadynamics (FMD) simulation, both support the idea that inhibitors (-)-phe and (-)-hex have better binding activities toward enzyme AChE, and that (-)-phe is stronger in binding than the present AD drug (-)-phy. [GRAPHICS] .

Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening


Authors: Williams, Alexander; Zhou, Shuo; Zhan, Chang-Guo

Cholinesterase inhibitors have long been used in the treatment of Alzheimer's Disease (AD) via the protection of acetylcholine levels. However, recent research has shown that the specific inhibition of butyrylcholinesterase (BChE) could better ameliorate symptoms within patients. In addition, it has recently been shown that selective inhibition of BChE can also significantly attenuate the toxicity and physiological effects of heroin. Currently, there are no specific and potent inhibitors of BChE approved for use in AD or heroin abuse. Through a combined use of in silico and in vitro screening, we have found three compounds with sub-50 nM IC50 values that specifically target BChE. These newly discovered BChE inhibitors can act as the lead scaffolds for future development of the desirably potent and selective BChE inhibitors.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket