

Lipoxin A4 ELISA Kit

This product is for research use only and is not intended for diagnostic use.

For illustrative purposes only. To perform the assay the instructions for use provided with the kit have to be used.

Creative Diagnostics

Address: 45-1 Ramsey Road, Shirley, NY 11967, USA

Tel: 1-631-624-4882 (USA) 44-161-818-6441 (Europe)

Fax: 1-631-938-8221

Email: info@creative-diagnostics.com

Web: www.creative-diagnostics.com

PRODUCT INFORMATION

Intended Use

This is an ELISA (Enzyme-Linked ImmunoSorbent Assay) for the quantitative analysis of Lipoxin A4levels in biological fluid. This test kit operates on the basis of competition between the enzyme conjugate and the Lipoxin A4 in the sample for a limited number of antibody binding sites.

General Description

Lipoxin A4(LXA4) is a biologically active lipoxygenase interaction product derived from arachidonic acid. Arachidonic acid is first oxygenated by 15-lipoxygenase to form 15-HETE which is then converted by 5lipoxygenase and epoxide hydrase to generate LXA4.LXA4 stimulates leukocyte chemotaxis without aggregation and inhibits natural killer cell cytotoxicity. It also provokes contraction of parenchymal strips and stimulates microvascular changes. Recent findings indicate that LXA4 inhibits leukocyte-dependent inflammation. Determination of LXA4 levels may provide new understanding of the role of LXA4 in basic cellular reactions and in pathophysiology of inflammation and other disease processes.

Reagents And Materials Provided

- 1. EIA BUFFER: 30 mL. Provided to dilute enzyme conjugate and Lipoxin A4 standards.
- 2. WASH BUFFER (10X): 20 mL. Dilute 10-fold with deionized water. Diluted wash buffer is used to wash all unbound enzyme conjugate, samples and standards from the wells after the one hour incubation.
- K-BLUE SUBSTRATE: 20 mL. Stabilized 3,3', 5,5' Tetramethylbenzidine (TMB) plus Hydrogen Peroxide 3. (H2O2) in a single bottle. It is used to develop the color in the wells after they have been washed. Keep substrate refrigerated. LIGHT SENSITIVE
- EXTRACTION BUFFER (5X):30 mL. Dilute 5-fold with deionized water. This buffer is used for diluting extracted and non-extracted samples.
- LIPOXIN A4 ENZYME LYOPHILIZED CONJUGATE: Two vials of lyophilized Lipoxin A4 horseradish peroxidase conjugate. Reconstitution with 75 µL of deionized water results in a 50:1 concentration. Blue capped vial.
- LIPOXIN A4 STANDARD: 100 μL. Lipoxin A4 standard provided at the concentration of 1 μg/mL. Green capped vial.
- LIPOXIN A4 ANTIBODY-COATED MICROPLATE: A 96 well Costar™ microplate with anti- Lipoxin A4 rabbit IgG precoated on each well. The plate is ready for use as is. DO NOT WASH!

Materials Required But Not Supplied

- 1. 300 mL deionized water to dilute wash buffer, extraction buffer and lyophilized conjugate.
- Precision pipettes that range from 10 μ L-1000 μ L and disposable tips.

NOTE: If all or several strips are to be used at one time, it is suggested that a multichannel pipette be used.

Clean test tubes used to dilute the standards and conjugate.

Tel: 1-631-624-4882 (USA)

Tel: 44-161-818-6441 (Europe)

Fax: 1-631-938-8221

- Graduated cylinders to dilute and mix wash buffer and extraction buffer. 4.
- 5. Microplate reader with 650 nm filter.
- 6. Plate cover or plastic film to cover plate during incubation.

OPTIONAL MATERIALS:

- 1N HCl or CD's Red Stop Solution. 7.
- 8. Microplate shaker. If performing an extraction on samples, the following will be required:
- 9. 1N HCI
- 10. Methanol
- 11. C18Sep-Pak®light column (Waters®Corporation)
- 12. Hexane
- 13. Methyl formate
- 14. Nitrogen gas
- Centrifuge

Storage

Lyophilized conjugate: -20°C or less

Do not freeze kit components All other kit components: 4°C

Specimen Collection And Preparation

This assay is non-species specific. Usually, urine and tissue culture supernatant can be assayed directly by diluting them with the diluted extraction buffer. Listed below is one possible extraction method that can be used for serum and plasma samples. There are other published extraction methods that can be used such as the one cited below for urine samples.

EXTRACTION OF LIPOXIN A4

- Dilute 100 µL sample with 200 µL of methanol then dilute the previous volume with 1.5 mL of water. 1.
- 2. For 1 mL sample: acidify to pH 3.5 with 1N HCl.
- 3. Precondition the C18Sep-Pak® light column (Waters® Corporation) by washing the column with 2 mL of methanol followed by 2 mL of water.
- 4. Apply the above sample into the column and wash the column with 5 mL of water followed by 5 mL hexane.
- Elute Lipoxin A4 with 2 mL of methyl formate. 5.
- 6. Evaporate methyl formate with a stream of N2.
- 7. Reconstitute the residue with 1 mL of diluted extraction buffer and assay for Lipoxin A4content.

NOTE: Extraction buffer must be diluted 5-fold with deionized water before use. Any precipitant present must be brought into solution before dilution.

ALTERNATIVE EXTRACTION METHOD

The extraction method cited below should be used for urine. Reprints of the article are available from CD

Tel: 1-631-624-4882 (USA)

Tel: 44-161-818-6441 (Europe)

Fax: 1-631-938-8221

Email: info@creative-diagnostics.com

upon request.Romano, M., Luciotti, G., Gangemi, S., Marinucci, F., Prontera, C., D'Urbano, E., Davi, G. Urinary Excretion of Lipoxin A4 and Related Compounds: Development of New Extraction Techniques for Lipoxins. Laboratory Investigation. 82(9): 1253-1254 (2002).

Assay Procedure

Prepare standards as follows:

Standard	Preparation				
А	stock solution 1 µg/mL (Provided in green capped vial.)				
В	take 20 μL of A, add to 980 μL of EIA buffer and mix=20 ng/mL				
С	take 200 µL of B, add to 1.8 mL of EIA buffer and mix=2 ng/mL				
D	D take 200 μL of C, add to 1.8 mL of EIA buffer and mix=0.2 ng/mL (200 pg/mL)				

Continue standard preparation following Scheme I.

SCHEME I

Standards	ng/mL	EIA buffer (μL added)	C standard μL	D standard μL
S ₀	0	as is	_	20
S ₁	0.02	900	-	100
S_2	0.04	800	<u>.</u> .	200
S_3	0.1	500	-	500
S_4	0.2	<u>u</u>	<u>.</u>	as is
S_5	0.4	800	200	
S_6	0.8	600	400	21
S ₇	2	-	as is	

- 2. Determine the number of wells to be used.
- Dilute the Lipoxin A4 enzyme conjugate. Add 1 µL of enzyme conjugate into 50 µL total volume of EIA buffer for each well assayed. For the whole plate, add 110 μL of enzyme conjugate into 5.5 mL total volume of EIA buffer. Mix the solution thoroughly.

NOTE: If more concentrated conjugate is needed than is contained in the first conjugate vial, reconstitute and use the second vial. Do not use the separate contents of both vials in the same assay as some assay variability may result. If the contents of both vials are required for an assay, pool the concentrated conjugates. Use the expiration date of the oldest reconstituted vial for the pool. Alternatively, prepare the necessary volumes of diluted conjugate and pool before using in the assay.

- Add 50 µL of standards (S) or unknown (U) (some samples may require diluting) to the appropriate wells in duplicate. See Scheme II for suggested template design.
- Add 50 µL of the diluted enzyme conjugate to each well. Use 8-channel pipette or 12-channel pipette for rapid addition.
- 6. Mix by shaking plare gently. A microplate shaker may be used.
- 7. Cover plate with plastic film or plate cover and incubate at room temperature for one hour. NOTE: Keep plate away from drafts and temperature fluctuations.
- 8. Dilute concentrated wash buffer with deionized water (i.e. 20 mL of wash buffer plus 180 mL of deionized water). Mix thoroughly.

Tel: 1-631-624-4882 (USA)

Tel: 44-161-818-6441 (Europe)

Fax: 1-631-938-8221

Email: info@creative-diagnostics.com

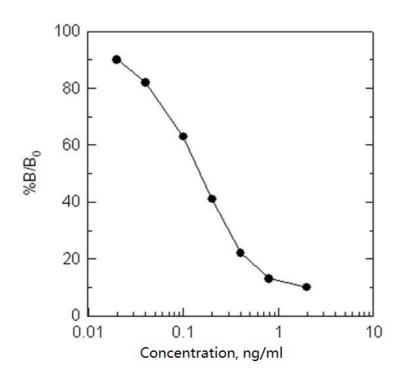
- After incubation, dump out the contents of the plate. Tap out contents thoroughly on a clean lint-free towel.
- 10. Wash each well with 300 µL of the diluted wash buffer. Repeat for a total of three washings. An automated plate washer can be used, however, increase wash cycles from three to five.
- 11. Add 150 µL of substrate to each well. Use multichannel pipette for best results. Mix by shaking plate gently.
- 12. Incubate at room temperature for 30 minutes.
- 13. Gently shake plate before taking a reading to ensure uniform color throughout each well.
- 14. Plate is read in a microplate reader at 650 nm. If a dual wavelength is used, set W1 at 650 nm and W2 at 490 nm.
- 15. If accounting for substrate background, use 2 to 8 wells as blanks with only substrate in the wells (150 μ L/well). Subtract the average of these absorbance values from the absorbance values of the wells being assayed.

NOTE: Some microplate readers can be programmed to do these subtractions automatically when reading the plate. Consult your instrument manual.

OPTIONAL TEST PROCEDURES

- 16. Add 50-100 µL of 1 N HCl or CD's Red Stop Solution to each well to stop enzyme reaction.
- 17. Read plate at 450 nm, if 1N HCl solution was used. Read plate at 650 nm, if CD's Red Stop Solution was used.
- 18. Plot the standard curve and estimate the concentrations of the samples from the curve. See "CALCULATIONS."

NOTE: Absorbance readings will approximately double when stopped with acid. If absorbance readings are too high for measuring with your microplate reader, decrease the substrate incubation by approximately 10 minutes but no more than 15 minutes.


SCHEME II

	1	2	3	4	5	6	7	8	9	10	11	12
Α	s ₀	s ₀	^U 1	^U 1	ug	ug	^U 17	^U 17	^U 25	^U 25	^U 33	u33
В	s ₁	s ₁	^U 2	^U 2	^U 10	^U 10	^U 18	^U 18	^u 26	^u 26	^U 34	^U 34
C	s ₂	s ₂	n3	пЗ	^U 11	^U 11	^u 19	^u 19	^u 27	^u 27	^U 35	^U 35
D	s3	s3	^U 4	U4	^U 12	^U 12	^u 20	^U 20	^U 28	^U 28	^U 36	^U 36
E	s ₄	s ₄	^U 5	^U 5	^U 13	^U 13	^u 21	^u 21	^u 29	^U 29	^U 37	^U 37
F	s ₅	s ₅	^и 6	^и 6	^U 14	^U 14	^u 22	^U 22	n30	n30	^U 38	^U 38
G	^s 6	^s 6	U7	^U 7	^U 15	^U 15	^U 23	^U 23	^U 31	^U 31	u39	u39
Н	s7	s7	^U 8	U8	^U 16	^U 16	^U 24	^U 24	^U 32	^U 32	^u 40	^U 40

Typical Standard Curve

Lipoxin A4 in EIA Buffer

NOTE: "Typical data" is a representation. Variances in data will occur. Optical density readings may fluctuate during the shelf-life of the kit, but the %B/B0 should remain comparable. Measuring wavelength: 650 nm

Standard	Standard Concentration (ng/mL)	Optical Density (Absorbance Value)	%B/B _o		
S ₀ (B ₀)	0	1.350	100		
S ₁ (B ₁)	0.02	1.214	90		
S ₂ (B ₂)	0.04	1.110	82		
S ₃ (B ₃)	0.1	0.850	63		
S ₄ (B ₄)	0.2	0.556	41		
S ₅ (B ₅)	0.4	0.297	22		
S ₆ (B ₆)	0.8	0.170	13		
S ₇ (B ₇)	2	0.136	10		

Specificity

LIPOXIN A4: 100.0%

15- EPI-LIPOXIN A4: 24.0% 5(S), 6(R)-DiHETE: 5.0%

LIPOXIN B4: 1.0%

15- HETE: 0.10%

5- HETE: <0.10%

12- HETE: <0.10%

LEUKOTRIENE B4: <0.01%

LEUKOTRIENE C4: <0.01%

LEUKOTRIENE D4: <0.01%

LEUKOTRIENE E4: <0.01%

Precautions

- 1. DO NOT use components beyond expiration date.
- DO NOT mix any reagents or components of this kit with any reagents or components of any other kit. This kit is designed to work properly as provided.
- 3. DO NOT pipette reagents by mouth.
- 4. Always pour substrate out of the bottle into a clean test tube - DO NOT pipette out of the bottle. If the pipette tip is unclean, this may result in contamination of the substrate.
- 5. All specimens should be considered potentially infectious. Exercise proper handling precautions.
- 6. DO NOT smoke, eat or drink in areas where specimens or reagents are being handled.
- 7. Use aseptic technique when opening and removing reagents from vials and bottles.
- 8. Keep plate covered except when adding reagents, washing or reading.
- 9. Kit components should be refrigerated at all times when not in use; lyophilized conjugate, frozen.
- 10. Ensure that the conjugate is completely reconstituted before use. Each vial, when reconstituted, provides sufficient reagent to perform 64 wells (8 strips). If more than 64 assays are to be run, reconstitute both vials and pool the reconstituted conjugate.

PROCEDURAL NOTES

- It is not necessary to allow reagents to warm to room temperature before use. 1.
- 2. Desiccant bag must remain in foil pouch with unused strips. Keep zip-lock pouch sealed when not in use to maintain a dry environment.
- Always use new pipette tips to pipette buffer, enzyme conjugate, standards and samples. 3.
- 4. Before pipetting a reagent, rinse the pipette tip three times with that reagent (i.e. fill the tip with the desired amount of

reagent and dispense back into the same vial - repeat 2 times). Now the tip is properly rinsed and ready to dispense the reagent into your well or test tube.

- 5. When pipetting into the wells, DO NOT allow the pipette tip to touch the inside of the well, or any of the reagents already in the well. This can result in cross contamination.
- Standards and samples should be assayed in duplicate. 6.
- 7. To quantitate, always run samples alongside a standard curve. If testing a sample that is not extracted, standards should be diluted in the same type of medium being tested. This medium should be known to be negative.
- Gently mix specimens and reagents before use. Avoid vigorous agitation.
- Before opening the lyophilized conjugate vial, examine the vial to ensure that lyophilized material has not been trapped in the cap. If material is in the cap, gently tap the upright vial to dislodge the trapped material.
- 10. To reconstitute the lyophilized conjugate, add 75 μL of deionized water to a vial. Rehydrate the conjugate by gently rotating the vial. Do not vortex or shake the contents. Avoid excess foaming. After the solid material has gone into solution, allow the conjugate to incubate at least 15 minutes before dilution. Write the date of reconstitution on the label. Conjugate may be stored at -20° C or less for up to one week after reconstitution.
- 11. The enzyme conjugate is most stable in its concentrated form. Dilute only the volume necessary for the amount of strips currenly being used.

Tel: 1-631-624-4882 (USA)

Tel: 44-161-818-6441 (Europe)

Fax: 1-631-938-8221

12. Before taking an absorbance reading, wipe the outside bottom of the wells with a lint-free wiper to remove dust and fingerprints.

References

- Chiang, N., Takano, T., Clish, C., Petasis, N., Tai, H.H., and Serhan, C. Aspirin-Triggered 15-epi-Lipoxin A4(ATL) Generation by Human Leukocytes and Murine Peritonitis Exudates: Development of a specific 15epi-LXA4 ELISA. The Journal of Pharmacology and Experimental Therapeutics. 287(2):779-790 (1998).
- Levy, B.D., Sanctis G. T. de, Devchand, P.V., Kim, E., Ackerman, K., Schmidt, B., Szeczeklik, W., Drazen, J., Serhan, C. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4. Nature Medicine. Online publication (2002).
- Levy, B.D., Bertram S., Tai, H.H., Israel, E., Fischer, A., Drazan, J.M., and Serhan, C.N. Agonist-Induced Lipoxin A4 Generation: Detection by a Novel Lipoxin A4 ELISA. American Oil Chemist Society - - Lipids. 28(12):1047-1053 (1993).
- Planaguma, A., Titos, E., Lopez-Parra, M., Gaya, J., Pueyo, G., Arroyo, V., and Claria, J. Aspirin (ASA) regulates 5-lipoxygenase activity and peroxisome proliferators-activated receptor α-meditated CINC-1 release in rat liver cells: novel actions of lipoxin A4(LXA4) and ASSA-triggered 15-epi-LXA4. The FASEB Journal.1937-1939 (2002).
- Romano, M., Luciotti, G., Gangemi, S., Marinucci, F., Prontera, C., D'Urbano, E., Davi, G. Urinary Excretion of Lipoxin A4

and Related Compounds: Development of New Extraction Techniques for Lipoxins. Laboratory Investigation.82(9):1253-1254 (2002).

- Serhan, C.N., Takano, T., and Maddox, J.F. Aspirin-triggered 15-epi-lipoxin A4and stable analogs of lipoxin A4are potent inhibitors of acute inflammation. In Lipoxygenases and Their Metabolites, S. Nigam, C.R. Pace-Asciak, Eds., Kluwer Academic Press, 1999, pp. 133-149.
- Serhan, C.N. Lipoxins and Novel Aspirin-triggered 15-epi-Lipoxins (ATL): A Jungle of Cell-Cell Interactions or a Therapeutic Opportunity. Prostaglandins. 53:107-137 (1997).
- 8. Takano, T., Fiore, S., Maddox, J.F., Brady, H.R., Petasis, N.A. and Serhan, C.N. Aspirin-triggered 15-epilipoxinA4(LXA4) and LXA4

stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J. Exp. Med. 185(9):1693-1704 (1997).

Takano, T., Clish, C.B., Gronert, K., Petasis, N., and Serhan, C.N. Neutrophil-mediated changes in vascular permeability are inhibited by topical applications of aspirin-triggered 15-epi-lipoxn A4and novel lipoxin B4 stable analogues. J. Clin. Invest. 101:819-26 (1998).