

Human Serum Amyloid A (aa 19 - 122) [His] (DAG385)

This product is for research use only and is not intended for diagnostic use.

PRODUCT INFORMATION

Product Overview	RecombinantSerum Amyloid A (SAA) (a.a. 19-122) is 13.9 kDa. It contains a 20 amino acidHis tag, was expressed in E. coli.
Species	Human
Conjugate	His
Applications	Specificmethodologies have not been tested using this product.
Format	Purified, Liquid
Concentration	1 mg/ml
Buffer	20mM Tris buffer, pH8.0 containing 10% glycerol
Preservative	None
Storage	2-8°C short term, -20°C long term

BACKGROUND

Introduction	Serum amyloid A (SAA)proteins are a family of apolipoproteins associated with high-densitylipoprotein (HDL) in plasma. Different isoforms of SAA are expressedconstitutively (constitutive SAAs) at different levels or in response toinflammatory stimuli (acute phase SAAs). These proteins are producedpredominantly by the liver. The conservation of these proteins throughoutinvertebrates and vertebrates suggests that SAAs play a highly essential rolein all animals.
Keywords	Amyloidfibril protein AA; Amyloid protein A; MGC111216; PIG 4; PIG4; SAA 1; SAA 2; SAA;

45-1 Ramsey Road, Shirley, NY 11967, USA

Email: info@creative-diagnostics.com

Tel: 1-631-624-4882 Fax: 1-631-938-8221

SAA1; SAA_HUMAN; SAA2; Serum amyloid A protein precursor; Serum amyloid A1isoform Serum amyloid A1 isoform 2; Serum amyloid protein A(4-101); TP53I4; Tumor protein