

Rabbit Anti-Human C3ORF58 monoclonal antibody, clone KG100-6 (CABT-L893)

This product is for research use only and is not intended for diagnostic use.

PRODUCT INFORMATION

Target	58K Golgi protein
Immunogen	Recombinant protein
Isotype	IgG
Source/Host	Rabbit
Species Reactivity	Human
Clone	KG100-6
Purification	Protein A purified.
Conjugate	Unconjugated
Applications	WB, IHC, FC
Molecular Weight	59 kDa
Cellular Localization	Cytoplasm, Golgi apparatus.
Positive Control	Human liver tissue, human kidney tissue.
Format	Liquid
Size	100 µl
Buffer	1×TBS (pH7.4), 1% BSA, 40% Glycerol.
Preservative	0.05% Sodium Azide

Storage	Store at +4°C after thawing. Aliquot store at -20°C or -80°C. Avoid repeated freeze / thaw cycles.
----------------	--

BACKGROUND

Introduction	58K protein antibodies are excellent for use as markers for the Golgi complex. The 58K protein has been identified as being FTCD, a bifunctional enzyme that channels 1-carbon units from formiminoglutamate, a metabolite of the histidine degradation pathway, to the folate pool. Defects in FTCD are the cause of glutamate formiminotransferase deficiency [also known as formiminoglutamicaciduria (FIGLU-uria)], an autosomal recessive disorder. Features of a severe phenotype include elevated levels of formiminoglutamate (FIGLU) in the urine in response to histidine administration, megaloblastic anemia and mental retardation. Features of a mild phenotype include high urinary excretion of FIGLU in the absence of histidine administration, mild developmental delay and no hematological abnormalities.
---------------------	--

Keywords	Formimidoyltetrahydrofolate cyclodeaminase;Formimidoyltransferase cyclodeaminase;Formiminotetrahydrofolate cyclodeaminase;Formiminotransferase cyclodeaminase;Formiminotransferase-cyclodeaminase;FTCD;FTCD_HUMAN;Glutamate formiminotransferase;Glutamate formyltransferase;LCHC 1;LCHC1 antibody
-----------------	--
