

Rabbit Anti-CHUK monoclonal antibody, clone TO74-13 (CABT-L736)

This product is for research use only and is not intended for diagnostic use.

PRODUCT INFORMATION

Target	IKK alpha + IKK beta
Immunogen	Recombinant protein
Isotype	IgG
Source/Host	Rabbit
Species Reactivity	Human, Mouse, Rat
Clone	TO74-13
Purification	Protein A purified.
Conjugate	Unconjugated
Applications	WB, ICC/IF, IP
Molecular Weight	85/87 kDa
Cellular Localization	Cytoplasm, Nucleus, Membrane raft.
Positive Control	A431, Daudi, Hela, B-6F1, C2C12.
Format	Liquid
Size	100 µl
Buffer	1×TBS (pH7.4), 1% BSA, 40% Glycerol.
Preservative	0.05% Sodium Azide

Storage	Store at +4°C after thawing. Aliquot store at -20°C or -80°C. Avoid repeated freeze / thaw cycles.
----------------	--

BACKGROUND

Introduction	The transcription factor NFkB is retained in the cytoplasm in an inactive form by the inhibitory protein I kB. Activation of NFkB requires that I kB be phosphorylated on specific serine residues, which results in targeted degradation of I kB. I kB kinase a (IKKa), previously designated CHUK, interacts with I kB-a and specifically phosphorylates I kB-a on Ser 32 and 36, the sites that trigger its degradation. IKKa appears to be critical for NFkB activation in response to proinflammatory cytokines. Phosphorylation of I kB by IKKa is stimulated by the NFkB inducing kinase (NIK), which itself is a central regulator for NFkB activation in response to TNF and IL-1. The functional IKK complex contains three subunits, IKKa, IKKb and IKKg (also designated NEMO), and each appear to make essential contributions to I kB phosphorylation.
---------------------	--

Keywords	CHUK;Conserved helix loop helix ubiquitous kinase;I kappa B kinase 1;I kappa B kinase 2;I Kappa B kinase alpha;I Kappa B kinase beta;IkB kinase alpha subunit;IkbKA;IkbKB;IKK a kinase;IKK alpha;IKK beta;IKK1;IKK2;IKKA;IKKB;IMD15;Inhibitor of kappa light polypeptide gene enhancer in B cells kinase beta;Inhibitor of nuclear factor kappa-B kinase subunit alpha;Inhibitor of nuclear factor kappa-B kinase subunit beta;NFkB1KA;NFkB1KB;Nuclear factor NF kappa B inhibitor kinase beta;Nuclear factor NFkappaB inhibitor kinase alpha;TCF 16;TCF16;Transcription factor 16 antibody
-----------------	---

GENE INFORMATION

Entrez Gene ID	7408
-----------------------	----------------------
