

Rabbit Anti-Human Acetyl-CoA Carboxylase monoclonal antibody, clone SN343 (CABT-L1177)

This product is for research use only and is not intended for diagnostic use.

PRODUCT INFORMATION

Target	Acetyl-CoA carboxylase-phosphatase
Immunogen	Peptide corresponding to humAcetyl CoA Carboxylase 1.
Isotype	IgG
Source/Host	Rabbit
Species Reactivity	Human
Clone	SN343
Purification	Protein A Purified
Conjugate	Unconjugated
Applications	IHC, WB
Format	Liquid
Buffer	PBS, pH 7.2-7.4, with 1% BSA, 50% glycerol
Preservative	0.09% Sodium Azide
Storage	Store at -20°C, Avoid Freeze/Thaw Cycles

BACKGROUND

Introduction

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. There are two ACC forms, alpha and beta, encoded by two different genes. ACC-alpha is highly enriched in lipogenic tissues. The enzyme is under long term control at the transcriptional and translational levels and under short term regulation by the phosphorylation/dephosphorylation of targeted serine residues and by allosteric transformation by citrate or palmitoyl-CoA. Multiple alternatively spliced transcript variants divergent in the 5' sequence and encoding distinct isoforms have been found for this gene.

Keywords

acetyl-CoA carboxylase-phosphatase;Phosphorylated acetyl -COA carboxylase;[acetyl-CoA carboxylase]-phosphatase;Acetyl-CoA carboxylase;ACC