

Mouse Anti-*E. coli* LPS Monoclonal antibody, Clone 2F2G21 (CABT-CS528)

This product is for research use only and is not intended for diagnostic use.

PRODUCT INFORMATION

Specificity	Reacts to <i>E. coli</i> O111:B4 (whole bacteria and LPS)
Target	<i>E. coli</i> LPS
Immunogen	Purified LPS from <i>E. coli</i> O111:B4
Isotype	IgG2a
Source/Host	Mouse
Species Reactivity	<i>E. coli</i>
Clone	2F2G21
Purification	Purified by Protein G chromatography
Conjugate	unconjugated
Applications	ELISA
Format	Liquid
Concentration	1mg/mL
Size	100 µg
Buffer	Solution in 0.05M phosphate buffered saline, pH 7.4
Preservative	None
Storage	Store at -20°C.

BACKGROUND

Introduction

Lipopolysaccharide (LPS), also known as endotoxin, is present mainly in the cell wall of Gram-negative bacteria. It comprises three structural regions the O-side chain, a middle polysaccharide component, and Lipid A which contributes to the pyrogenic nature of LPS.

Keywords

E. coli LPS; E. coli; Escherichia coli LPS; LPS; Lipopolysaccharide