



# Mouse anti-Human K+ Channel $\alpha$ monoclonal antibody, clone 43/L Diboofm (CABT-B9223)

This product is for research use only and is not intended for diagnostic use.

## PRODUCT INFORMATION

|                           |                                                                                                             |
|---------------------------|-------------------------------------------------------------------------------------------------------------|
| <b>Immunogen</b>          | Human K+ Channel $\alpha$ Subunit aa. 995-1113                                                              |
| <b>Isotype</b>            | IgG1                                                                                                        |
| <b>Source/Host</b>        | Mouse                                                                                                       |
| <b>Species Reactivity</b> | Rat, Human, Mouse                                                                                           |
| <b>Clone</b>              | 43/L Diboofm                                                                                                |
| <b>Purification</b>       | The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. |
| <b>Conjugate</b>          | Unconjugated                                                                                                |
| <b>Applications</b>       | WB; IF                                                                                                      |
| <b>Format</b>             | Liquid                                                                                                      |
| <b>Concentration</b>      | 250 $\mu$ g/ml                                                                                              |
| <b>Size</b>               | 50 $\mu$ g, 150 $\mu$ g                                                                                     |
| <b>Buffer</b>             | Aqueous buffered solution containing BSA, glycerol, and $\leq 0.09\%$ sodium azide.                         |
| <b>Storage</b>            | Store undiluted at -20°C.                                                                                   |

## BACKGROUND

|                     |                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------|
| <b>Introduction</b> | Cellular excitability is modulated by the precise function of voltage-sensitive ion channels. |
|---------------------|-----------------------------------------------------------------------------------------------|

Large conductance potassium channels (Maxi-K) are unique in that they are sensitive to transmembrane potential and intracellular Ca<sup>2+</sup> concentrations. These channels, important for neuronal firing and vascular tone, share many features with voltage-dependent Na<sup>+</sup>, Ca<sup>2+</sup>, and K<sup>+</sup> channels. Among these are the S4 region, a motif with a repeated triple sequence of one positively charged amino acid and two hydrophobic amino acids. This region is thought to be the voltage sensor. Maxi-K is subject to complex metabolic control that also involves G proteins and phosphorylation/dephosphorylation reactions. This type of K<sup>+</sup> channel is composed of two subunits, the pore-forming  $\alpha$  subunit (hslo) and the regulatory  $\beta$  subunit. The  $\alpha$  subunit is subject to direct phosphorylation by cyclic GMP-dependent protein kinase (PKG) and dephosphorylation by protein phosphatase 2A. The fact that the  $\alpha$  subunit of Maxi-K channels is a substrate of PKG supports the idea that these channels perform an important function in the cellular response to potent vasodilators, such as nitrocompounds and atrial natriuretic peptide.

---

**Keywords**

KCNMA1; potassium large conductance calcium-activated channel, subfamily M, alpha member 1; SLO; calcium-activated potassium channel subunit alpha-1; BK channel alpha subunit; KCa1.1; mSLO1; hSlo; k(VCA)alpha; slo homolog

---