c-Jun ELISA Kit (DEIA-XYA908)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

cultured cells
Species Reactivity
Human, Mouse, Rat
Intended Use
The c-Jun Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can monitor c-Jun protein expression profile in cells. The kit can be used for measuring the relative amounts of c-Jun in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on c-Jun.
Contents of Kit
1. 96-Well Cell Culture Clear-Bottom Microplate: 1 plate
2. 10x TBS: 24 mL (10x), Clear
3. Quenching Buffer: 24 mL (1x), Clear
4. Blocking Buffer: 50 mL (1x), Clear
5. 10x Wash Buffer: 50 mL (10x), Clear
6. 100x Anti-c-Jun Antibody (Rabbit Polyclonal): 60 μL (100x), Purple
7. 100x Anti-GAPDH Antibody (Mouse Monoclonal): 60 μL (100x), Green
8. HRP-Conjugated Anti-Rabbit IgG Antibody: 6 mL (1x), Glass
9. HRP-Conjugated Anti-Mouse IgG Antibody: 6 mL (1x), Glass
10. Primary Antibody Diluent: 12 mL (1x), Clear
11. Ready-to-Use Substrate: 12 mL (1x), Brown
12. Stop Solution: 12 mL (1x), Clear
13. Crystal Violet Solution: 6 mL (1x), Glass
14. SDS Solution: 24 mL (1x), Clear
15. Adhesive Plate Seals: 4 seals
4°C/6 Months


Have you cited DEIA-XYA908 in a publication? Let us know and earn a reward for your research.

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Genome-wide detection and sequence conservation analysis of long non-coding RNA during hair follicle cycle of yak


Authors: Zhang, Xiaolan; Bao, Qi; Jia, Congjun; Li, Chen; Chang, Yongfang; Wu, Xiaoyun; Liang, Chunnian; Bao, Pengjia; Yan, Ping

Background Long non-coding RNA (lncRNA) as an important regulator has been demonstrated playing an indispensable role in the biological process of hair follicles (HFs) growth. However, their function and expression profile in the HFs cycle of yak are yet unknown. Only a few functional lncRNAs have been identified, partly due to the low sequence conservation and lack of identified conserved properties in lncRNAs. Here, lncRNA-seq was employed to detect the expression profile of lncRNAs during the HFs cycle of yak, and the sequence conservation of two datasets between yak and cashmere goat during the HFs cycle was analyzed. Results A total of 2884 lncRNAs were identified in 5 phases (Jan., Mar., Jun., Aug., and Oct.) during the HFs cycle of yak. Then, differential expression analysis between 3 phases (Jan., Mar., and Oct.) was performed, revealing that 198 differentially expressed lncRNAs (DELs) were obtained in the Oct.-vs-Jan. group, 280 DELs were obtained in the Jan.-vs-Mar. group, and 340 DELs were obtained in the Mar.-vs-Oct. group. Subsequently, the nearest genes of lncRNAs were searched as the potential target genes and used to explore the function of DELs by GO and KEGG enrichment analysis. Several critical pathways involved in HFs development such as Wnt signaling pathway, VEGF signaling pathway, and signaling pathways regulating pluripotency of stem cells, were enriched. To further screen key lncRNAs influencing the HFs cycle, 24 DELs with differ degree of sequence conservation were obtained via a comparative analysis of partial DELs with previously published lncRNA-seq data of cashmere goat in the HFs cycle using NCBI BLAST-2.9.0+, and 3 DELs of them were randomly selected for further detailed analysis of the sequence conservation properties. Conclusions This study revealed the expression pattern and potential function of lncRNAs during HFs cycle of yak, which would expand the knowledge about the role of lncRNAs in the HFs cycle. The findings related to sequence conservation properties of lncRNAs in the HFs cycle between the two species may provide valuable insights into the study of lncRNA functionality and mechanism.

Comment on Jun, SY; et al. "Tumor Budding and Poorly Differentiated Clusters in Small Intestinal Adenocarcinoma" Cancers 2020, 12, 2199


Authors: Giuffrida, Paolo; Arpa, Giovanni; Vanoli, Alessandro; Di Sabatino, Antonio

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket