SARS S1 [His] (DAG1861)

SARS S1 [His], recombinant protein from E. coli

Product Overview
S1 (SARS) (P59594) partial recombinant protein with GST tag expressed inEscherichia coli .
Nature
Recombinant
Tag/Conjugate
His
Procedure
None
Purity
Ion exchange column and HPLC reverse phase column
Format
Lyophilized
Buffer
Lyophilized from 50 mM Tris-HCl, 60 mM NaCl (50% glycerol)
Preservative
None
Storage
2-8°C short term, -20°C long term
Introduction
Severe acute respiratory syndrome is a viral respiratory disease in humans which is caused by the SARS coronavirus (SARS-CoV). Between November 2002 and July 2003, an outbreak of SARS in Hong Kong nearly became a pandemic, with 8, 422 cases and 916 deaths worldwide (10.9% fatality) according to the World Health Organization. Within weeks, SARS spread from Hong Kong to infect individuals in 37 countries in early 2003.[

Citations


Have you cited DAG1861 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Identification of Major Histocompatibility Complex Class I C Molecule as an Attachment Factor That Facilitates Coronavirus HKU1 Spike-Mediated Infection

JOURNAL OF VIROLOGY

Authors: Chan, Che Man; Lau, Susanna K. P.; Woo, Patrick C. Y.; Tse, Herman; Zheng, Bo-Jian; Chen, Ling; Huang, Jian-Dong; Yuen, Kwok-Yung

Human coronavirus HKU1 (HCoV-HKU1) is a recently discovered human coronavirus associated with respiratory tract infections worldwide. In this study, we have identified the major histocompatibility complex class I C molecule (HLA-C) as an attachment factor in facilitating HCoV-HKU1 spike (S)-mediated infection. HCoV-HKU1 S pseudotyped virus was assembled using a human immunodeficiency virus type 1-derived reporter virus harboring the human codon-optimized spike of HCoV-HKU1. We identified human alveolar epithelial A549 cells as the most susceptible cell line among those tested to infection by HCoV-HKU1 S pseudotypes. A549 cells were shown to bind purified soluble HCoV-HKU1 S1-600 glycopeptide. To search for the functional receptor for HCoV-HKU1, an A549 cDNA expression library was constructed and transduced into the nonpermissive, baby hamster kidney cells line BHK-21. Transduced cells that bind soluble HCoV-HKU1 S1-600 glycoprotein with C-terminal FLAG were sorted. Sequencing of two independent clones revealed cDNA inserts encoding HLA-C. Inhibition of HLA-C expression or function by RNAi silencing and anti-HLA-C antibody decreased HCoV-HKU1 S pseudotyped virus infection of A549 cells by 62 to 65%, whereas pretreatment of cells with neuraminidase decreased such infection by only 13%. When HLA-C was constitutively expressed in another nonpermissive cell line, NIH-3T3, quantitative PCR showed that the binding of HCoV-HKU1 S pseudotyped virus to cell surfaces was increased by 200-fold, but the cells remained nonsusceptible to HCoV-HKU1 S pseudotyped virus infection. Our data suggest that HLA-C is involved in the attachment of HCoV-HKU1 to A549 cells and is a potential candidate to facilitate cell entry. However, other unknown surface proteins on A549 cells may be concomitantly utilized by S glycoprotein of HCoV-HKU1 during viral entry. Further studies are required to elucidate other putative receptors or coreceptors for HCoV-HKU1 and the mechanism of HCoV-HKU1 S-mediated cell entry.

Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus

MBIO

Authors: Anthony, S. J.; Gilardi, K.; Menachery, V. D.; Goldstein, T.; Ssebide, B.; Mbabazi, R.; Navarrete-Macias, I.; Liang, E.; Wells, H.; Hicks, A.; Petrosov, A.; Byarugaba, D. K.; Debbink, K.; Dinnon, K. H.; Scobey, T.; Randell, S. H.; Yount, B. L.; Cranfield, M.; Johnson, C. K.; Baric, R. S.; Lipkin, W. I.; Mazet, J. A. K.

The evolutionary origins of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) are unknown. Current evidence suggests that insectivorous bats are likely to be the original source, as several 2c CoVs have been described from various species in the family Vespertilionidae. Here, we describe a MERS-like CoV identified from a Pipistrellus cf. hesperidus bat sampled in Uganda (strain PREDICT/PDF-2180), further supporting the hypothesis that bats are the evolutionary source of MERS-CoV. Phylogenetic analysis showed that PREDICT/PDF-2180 is closely related to MERS-CoV across much of its genome, consistent with a common ancestry; however, the spike protein was highly divergent (46% amino acid identity), suggesting that the two viruses may have different receptor binding properties. Indeed, several amino acid substitutions were identified in key binding residues that were predicted to block PREDICT/PDF-2180 from attaching to the MERS-CoV DPP4 receptor. To experimentally test this hypothesis, an infectious MERS-CoV clone expressing the PREDICT/PDF-2180 spike protein was generated. Recombinant viruses derived from the clone were replication competent but unable to spread and establish new infections in Vero cells or primary human airway epithelial cells. Our findings suggest that PREDICT/PDF-2180 is unlikely to pose a zoonotic threat. Recombination in the S1 subunit of the spike gene was identified as the primary mechanism driving variation in the spike phenotype and was likely one of the critical steps in the evolution and emergence of MERS-CoV in humans. IMPORTANCE Global surveillance efforts for undiscovered viruses are an important component of pandemic prevention initiatives. These surveys can be useful for finding novel viruses and for gaining insights into the ecological and evolutionary factors driving viral diversity; however, finding a viral sequence is not sufficient to determine whether it can infect people (i.e., poses a zoonotic threat). Here, we investigated the specific zoonotic risk of a MERS-like coronavirus (PREDICT/PDF-2180) identified in a bat from Uganda and showed that, despite being closely related to MERS-CoV, it is unlikely to pose a threat to humans. We suggest that this approach constitutes an appropriate strategy for beginning to determine the zoonotic potential of wildlife viruses. By showing that PREDICT/PDF-2180 does not infect cells that express the functional receptor for MERS-CoV, we further show that recombination was likely to be the critical step that allowed MERS to emerge in humans.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket