DENV type 3 Envelope protein [His] (DAG457)

DENV type 3 Envelope protein (aa 300-400) [His], recombinant protein from E. coli

Product Overview
Recombinant Dengue Type-3 Envelope Domain III (amino acids 300-400) immunodominant regions,was expressed in E. coli. This region contains neutralizing epitopes, and receptor binding domain. Reacts with Dengue Type 3 IgG. Contains a 6-His fusion partner, w
Nature
Recombinant
Tag/Conjugate
His
Procedure
None
Purity
> 95% pure (12% SDS-PAGE (Coomassie)). Proprietary chromatographic technique
Format
Purified, Liquid
Concentration
1.05 mg/ml
Buffer
PBS, pH 7.4
Preservative
None
Storage
2-8°C short term, -20°C long term
Introduction
Dengue virus (DENV) in one of four serotypes is the cause of dengue fever. It is a mosquito-borne single positive-stranded RNA virus of the family Flaviviridae; genus Flavivirus. All four serotypes can cause the full spectrum of disease. Its genome is about 11000 bases that codes for three structural proteins, capsid protein C, membrane protein M, envelope protein E; seven nonstructural proteins, NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5; and short non-coding regions on both the 5' and 3' ends. Further classification of each serotype into genotypes often relates to the region where particular strains are commonly found or were first found.
Keywords
DENV; Dengue Virus Envelope Protein; DENV Envelope Protein; Dengue virus

Citations


Have you cited DAG457 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Current progress in dengue vaccines

JOURNAL OF BIOMEDICAL SCIENCE

Authors: Wan, Shu-Wen; Lin, Chiou-Feng; Wang, Shuying; Chen, Yu-Hung; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Anderson, Robert; Lin, Yee-Shin

Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.

Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity

CLINICAL AND VACCINE IMMUNOLOGY

Authors: Keasey, Sarah L.; Pugh, Christine L.; Jensen, Stig M. R.; Smith, Jessica L.; Hontz, Robert D.; Durbin, Anna P.; Dudley, Dawn M.; O'Connor, David H.; Ulrich, Robert G.

Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket