One Step Multi-Drug Urine Test Panel (DTS060)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Intended Use
One Step Multi-Drug Urine Test Panel is consisted of twelve individual one-step immunoassays. The test is a lateral flow, one-step immunoassay for the qualitative detection of specific drugs and their metabolites in human urine.
Store at 4~ 30 °C in the sealed pouch up to the expiration date.
Keep away from direct sunlight,moisture and heat.DO NOT FREEZE.


Have you cited DTS060 in a publication? Let us know and earn a reward for your research.

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Time-kill and post-antibiotic effect of colistin at different static concentrations in in vitro Acinetobacter baumannii


Authors: Rasidin, R. S. M.; Suhaili, Z.; Mohamed, A. F. S.; Hod, R.; Neela, V; Amin-Nordin, S.

Nosocomial infection caused by Acinetobacter baumannii is common among immunocompromised patients. Treatment strategy is limited due to rapid resistance development and lack of novel antibiotic. Colistin has been the last line therapy with good in vitro activity against infections caused by multi-drug resistance A. baumannii. However, pharmacological updates are required to support dosing optimisation. This study aimed to determine the time-kill kinetic and resistance development after antibiotic exposure as well as post-antibiotic effect of colistin at different static concentrations in in vitro A. baumannii system. The static in vitro time-kill and post-antibiotic effect experiments were conducted against two clinical isolates as well as one reference isolate ATCC 19606. Time-kill and postantibiotic effect were studied at colistin concentrations ranging from 0.25MIC to 16.0MIC and 0.5MIC to 4.0MIC, respectively. Post-exposure resistance development was examined in time-kill study. Killing activity and post-antibiotic effect were in a concentration-dependent manner. However, delayed killing activity indicates colistin tolerance. Development of resistance after exposure was not detected except for the ATCC 19606 strain. Dosing suggestion based on the observations include administration of supplemental dose 3 MIU at 12 hours after loading dose, administration of maintenance dose 9 MIU in two divided doses and application of extended interval in renal adjustment dose. However, the information is applicable for non-colistin-heteroresistance A. baumannii with colistin MIC < 1.0 mg/L. As for heteroresistance and strain with colistin MIC > 1.0 mg/L, combination therapy would be the more appropriate treatment strategy.

Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale con fined poultry feeding operations


Authors: Hubbard, L. E.; Givens, C. E.; Griffin, D. W.; Iwanowicz, L. R.; Meyer, M. T.; Kolpin, D. W.

Manure from livestock production has been associated with the contamination of water resources. To date, research has primarily focused on runoff of these contaminants from animal operations into surface water, and the introduction of poultry-derived pathogenic zoonoses and other contaminants into groundwater is under-investigated. We characterized pathogens and other microbial and chemical contaminants in poultry litter, groundwater, and surface water near confined poultry feeding operations (chicken layer, turkey) at 9 locations in Iowa and one in Wisconsin from May and June 2016. Results indicate that poultry litter from large-scale poultry confined feeding operations is a likely source of environmental contamination and that groundwater is also susceptible to such poultry-derived contamination. Poultry litter, groundwater, and surface water samples had detections of viable bacteria growth (Salmonella spp., enterococci, staphylococci, lactobacilli), multi-drug resistant Salmonella DT104 flo(st) and int genes, F+ RNA coliphage (group I and IV), antibiotic resistance genes (ARGs; bla(DHA), bla(OXA-48), bla(TEM), bla(CMY-2), tetM), phytoestrogens (biochanin A, daidzein, formononetin), and a progestin (progesterone). In addition, mcr-1 (a colistin ARG), was detected in a groundwater sample and in another groundwater sample, antibiotic resistant isolates were positive for Brevibacterium spp., a potential signature of poultry in the environment. Detectable estrogenicity was not measured in poultry litter, but was observed in 67% of the surface water samples and 22% were above the U.S. Environmental Protection Agency trigger level of 1 ng/L. The transport of microbial pathogens to groundwater was significantly greater (p < 0.001) than the transport of trace organic contaminants to groundwater in this study. In addition to viable pathogens, several clinically important ARGs were detected in litter, groundwater, and surface water, highlighting the need for additional research on sources of these contaminants in livestock dominated areas.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket