Rat Immunosuppressive Acidic Protein ELISA Kit (DEIA-BJ2165)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
Serum, plasma, cell culture supernatants, body fluid and tissue homogenate
Species Reactivity
Rat
Intended Use
Rat Immunosuppressive Acidic Protein ELISA Kit is a 1.5 hour solid-phase ELISA designed for the quantitative determination of the Immunosuppressive Acidic Protein. This ELISA kit is for research use only, not for therapeutic or diagnostic applications.
Contents of Kit
1. MICROTITER PLATE: 96 wells
2. ENZYME CONJUGATE: 6.0 mL or 10 ml
3. STANDARD A-F: 1 vial each
4. SUBSTRATE A: 6 mL
5. SUBSTRATE B: 6 mL
6. STOP SOLUTION: 6 mL
7. WASH SOLUTION (100 x): 10 mL
8. BALANCE SOLUTION: 3 mL
Storage
All components of this kit are stable at 2-8°C until the kit's expiration date.
Detection Range
0.5-10 mg/mL
Sensitivity
0.1 mg/mL

Citations


Have you cited DEIA-BJ2165 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Membrane-bound TNF mediates microtubule-targeting chemotherapeutics-induced cancer cytolysis via juxtacrine inter-cancer-cell death signaling

CELL DEATH AND DIFFERENTIATION

Authors: Zhang, Jing; Yang, Yu; Zhou, Shenao; He, Xueyan; Cao, Xuan; Wu, Chenlu; Hu, Hong; Qin, Jie; Wei, Gang; Wang, Huayi; Liu, Suling; Sun, Liming

Microtubule-targeting agents (MTAs) are a class of most widely used chemotherapeutics and their mechanism of action has long been assumed to be mitotic arrest of rapidly dividing tumor cells. In contrast to such notion, here we show-in many cancer cell types-MTAs function by triggering membrane TNF (memTNF)-mediated cancer-cell-to-cancer-cell killing, which differs greatly from other non-MTA cell-cycle-arresting agents. The killing is through programmed cell death (PCD), either in way of necroptosis when RIP3 kinase is expressed, or of apoptosis in its absence. Mechanistically, MTAs induce memTNF transcription via the JNK-cJun signaling pathway. With respect to chemotherapy regimens, our results establish that memTNF-mediated killing is significantly augmented by IAP antagonists (Smac mimetics) in a broad spectrum of cancer types, and with their effects most prominently manifested in patient-derived xenograft (PDX) models in which cell-cell contacts are highly reminiscent of human tumors. Therefore, our finding indicates that memTNF can serve as a marker for patient responsiveness, and Smac mimetics will be effective adjuvants for MTA chemotherapeutics. The present study reframes our fundamental biochemical understanding of how MTAs take advantage of the natural tight contact of tumor cells and utilize memTNF-mediated death signaling to induce the entire tumor regression.

Phytoremediation Mechanisms in Air Pollution Control: a Review

WATER AIR AND SOIL POLLUTION

Authors: Lee, Bernice Xin Yi; Hadibarata, Tony; Yuniarto, Adhi

Air pollutants originated from natural and anthropogenic sources and able to bio-magnify and bio-accumulate in the trophic levels, thus increase toxicity in the food chain. Various air pollutants (particulate matters (PMs), volatile organic compounds (VOCs), inorganic air pollutants (IAP), persistent organic pollutants (POPs), heavy metals, and black carbon) resulted in adverse effects on environmental and human health after prolonged exposure. These airborne particles can travel in gaseous form for long distance and deteriorate the air quality of downstream areas. Air pollution abatement can be implemented by reducing emissions at source and purifying pollutants with remediation techniques. However, air pollution remained as the dominant issue to cause burden in human and ecosystem well-being. Due to drawbacks like expensive, high maintenance, and likelihood for pollutants' reemission, existing conventional remediation technologies is insufficient for air pollutants mitigation. Phytoremediation enters the picture of air pollution control as a cost-effective, energy-saving, and environmental-friendly technology in remediating air pollutants. In phytoremediation, plant organs and associating microbes in the phyllosphere and rhizosphere interacted with each other to remediate air pollutants. Phytoremediation of air pollutants involves the rhizosphere of plants as pollutants may deposit in the soil during leaf fall and precipitation. Additionally, the phytoremediation mechanisms involve phytoextraction, phytovolatilization, phytodegradation, phytostabilization, rhizodegradation, and rhizofiltration. A brief overview of phytoremediation mechanisms for each air pollutants is presented. In short, the benefits of phytoremediation and its associated gaps in air pollution control are described.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket