Human ADORA1 (Adenosine receptor A1) ELISA Kit (DEIA-FN65)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
serum, plasma, cell culture supernatants, tissue homogenate
Species Reactivity
Human
Intended Use
For quantitative detection of Human ADORA1 (Adenosine receptor A1) in serum, plasma, tissue homogenates and other biological fluids.
Contents of Kit
1. 96-well strip plate (Dismountable), 1 plate
2. Lyophilized Standard, 2 vials
3. Sample/Standard dilution buffer, 20 mL
4. Biotin-detection antibody (Concentrated), 120 uL
5. Antibody dilution buffer, 10 mL
6. HRP-Streptavidin Conjugate(SABC), 120 uL
7. SABC dilution buffer, 10 mL
8. TMB substrate, 10 mL
9. Stop solution, 10 mL
10. Wash buffer (25X), 30 mL
11. Plate Sealer, 5 pieces
12. Product Manual, 1 copy
Storage
Store the unopened product at 2 - 8 °C. Do not use past expiration date.
Precision
Intra-Assay: CV<8%
Inter-Assay: CV<10%
Detection Range
0.156-10 ng/mL
Sensitivity
0.094 ng/mL
Standard Curve

Citations


Have you cited DEIA-FN65 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Differential gene expression changes in the dorsal root versus trigeminal ganglia following peripheral nerve injury in rats

EUROPEAN JOURNAL OF PAIN

Authors: Korczeniewska, Olga A.; Rider, Giannina Katzmann; Gajra, Sheetal; Narra, Vivek; Ramavajla, Vaishnavi; Chang, Yun-Juan; Tao, Yuanxiang; Soteropoulos, Patricia; Husain, Seema; Khan, Junad; Eliav, Eli; Benoliel, Rafael

Background The dorsal root (DRG) and trigeminal (TG) ganglia contain cell bodies of sensory neurons of spinal and trigeminal systems, respectively. They are homologs of each other; however, differences in how the two systems respond to injury exist. Trigeminal nerve injuries rarely result in chronic neuropathic pain (NP). To date, no genes involved in the differential response to nerve injury between the two systems have been identified. We examined transcriptional changes involved in the development of trigeminal and spinal NP. Methods Trigeminal and spinal mononueropathies were induced by chronic constriction injury to the infraorbital or sciatic nerve. Expression levels of 84 genes in the TG and DRG at 4, 8 and 21 days post-injury were measured using real-time PCR. Results We found time-dependent and ganglion-specific transcriptional regulation that may contribute to the development of corresponding neuropathies. Among genes significantly regulated in both ganglia Cnr2, Grm5, Htr1a, Il10, Oprd1, Pdyn, Prok2 and Tacr1 were up-regulated in the TG but down-regulated in the DRG at 4 days post-injury; at 21 days post-injury, Adora1, Cd200, Comt, Maob, Mapk3, P2rx4, Ptger1, Tnf and Slc6a2 were significantly up-regulated in the TG but down-regulated in the DRG. Conclusions Our findings suggest that spinal and trigeminal neuropathies due to trauma are differentially regulated. Subtle but important differences between the two ganglia may affect NP development. Significance We present distinct transcriptional alterations in the TG and DRG that may contribute to differences observed in the corresponding mononeuropathies. Since the trigeminal system seems more resistant to developing NP following trauma our findings lay ground for future research to detect genes and pathways that may act in a protective or facilitatory manner. These may be novel and important therapeutic targets.

Association Analysis of the Adenosine A1 Receptor Gene Polymorphisms in Patients with Methamphetamine Dependence/Psychosis

CURRENT NEUROPHARMACOLOGY

Authors: Kobayashi, Hideaki; Ujike, Hiroshi; Iwata, Nakao; Inada, Toshiya; Yamada, Mitsuhiko; Sekine, Yoshimoto; Uchimura, Naohisa; Iyo, Masaomi; Ozaki, Norio; Itokawa, Masanari; Sora, Ichiro

Several lines of evidence suggest that the dopaminergic nervous system contributes to methamphetamine (METH) dependence, and there is increasing evidence of antagonistic interactions between dopamine and adenosine receptors in METH abusers. We therefore hypothesized that variations in the A1 adenosine receptor (ADORA1) gene modify genetic susceptibility to METH dependence/psychosis. In this study, we identified 7 single nucleotide polymorphisms (SNPs) in exons and exon-intron boundaries of the ADORA1 gene in a Japanese population. A total of 171 patients and 229 controls were used for an association analysis between these SNPs and METH dependence/psychosis. No significant differences were observed in either the genotypic or allelic frequencies between METH dependent/psychotic patients and controls. A global test of differentiation among samples based on haplotype frequencies showed no significant association. In the clinical feature analyses, no significant associations were observed among latency of psychosis, prognosis of psychosis, and spontaneous relapse. These results suggest that the ADORA1 gene variants may make little or no contribution to vulnerability to METH dependence/psychosis.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket