Human ABCA13 (ATP Binding Cassette Transporter A13) ELISA Kit (DEIA-FN06)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
serum, plasma, cell culture supernatants, tissue homogenate
Species Reactivity
Human
Intended Use
For quantitative detection of Human ABCA13 (ATP Binding Cassette Transporter A13) in serum, plasma, tissue homogenates and other biological fluids.
Contents of Kit
1. 96-well strip plate (Dismountable), 1 plate
2. Lyophilized Standard, 2 vials
3. Sample/Standard dilution buffer, 20 mL
4. Biotin-detection antibody (Concentrated), 120 uL
5. Antibody dilution buffer, 10 mL
6. HRP-Streptavidin Conjugate(SABC), 120 uL
7. SABC dilution buffer, 10 mL
8. TMB substrate, 10 mL
9. Stop solution, 10 mL
10. Wash buffer (25X), 30 mL
11. Plate Sealer, 5 pieces
12. Product Manual, 1 copy
Storage
Store the unopened product at 2 - 8 °C. Do not use past expiration date.
Precision
Intra-Assay: CV<8%
Inter-Assay: CV<10%
Detection Range
78-5000 pg/mL
Sensitivity
46.875 pg/mL
Standard Curve

Citations


Have you cited DEIA-FN06 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells

CELL CYCLE

Authors: Barbet, Romain; Peiffer, Isabelle; Hutchins, James R. A.; Hatzfeld, Antoinette; Garrido, Edith; Hatzfeld, Jacques A.

The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporter(low) phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.

The human ATP binding cassette gene ABCA13, located on chromosome 7p12.3, encodes a 5058 amino acid protein with an extracellular domain encoded in part by a 4.8-kb conserved exon

CYTOGENETIC AND GENOME RESEARCH

Authors: Prades, C; Arnould, I; Annilo, T; Shulenin, S; Chen, ZQ; Orosco, L; Triunfol, M; Devaud, C; Maintoux-Larois, C; Lafargue, C; Lemoine, C; Denefle, P; Rosier, M; Dean, M

The ABCA subfamily of ATP-binding cassette (ABC) transporters includes eleven members to date. In this study, we describe a new, unusually large gene on chromosome 7p12.3, ABCA13. This gene spans over 450 kb and is split into 62 exons. The predicted ABCA13 protein consists of 5,058 amino acid residues making it the largest ABC protein described to date. Like the other ABCA subfamily members, ABCA13 contains a hydrophobic, predicted transmembrane segment at the N-terminus, followed by a large hydrophilic region. In the case of ABCA13, the hydrophilic region is unexpectedly large, more than 3,500 amino acids, encoded by 30 exons, two of which are 4.8 and 1.7 kb in length. These two large exons are adjacent to each other and are conserved in the mouse Abca13 gene. Tissue profiling of the major transcript reveals the highest expression in human trachea, testis, and bone marrow. The expression of the gene was also determined in 60 tumor cell lines and the highest expression was detected in the SR leukemia, SNB-19 CNS tumor and DU-145 prostate tumor cell lines. ABCA13 has high similarity with other ABCA subfamily genes which are associated with human inherited diseases: ABCA 1 with the cholesterol transport disorders Tangier disease and familial hypoalphalipoproteinemia, and ABCA4 with several retinal degeneration disorders. The ABCA 13 gene maps to chromosome 7p12.3, a region that contains an inherited disorder affecting the pancreas (Shwachman-Diamond syndrome) as well as a locus involved in T-cell tumor invasion and metastasis (INM7), and therefore is a positional candidate for these pathologies. Copyright (C) 2002 S. Karger AG, Basel.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket