LncRNA SNHG8 accelerates proliferation and inhibits apoptosis in HPV-induced cervical cancer through recruiting EZH2 to epigenetically silence RECK expression
JOURNAL OF CELLULAR BIOCHEMISTRY
Authors: Qu, Xiaohui; Li, Yuanyuan; Wang, Lin; Yuan, Ningxia; Ma, Meng; Chen, Yao
Abstract
Infection of human papillomaviruses (HPVs), such as subtypes HPV16 and HPV18 is carcinogenic to human and is prominent cause of HPV-positive cervical carcinoma (CC). A closer investigation into the mechanism of HPV-induced CC may stimulate the generation of an improved therapy treating cervical cancer. Our study herein interrogated the function of a small nucleolar RNA host gene 8 (SNHG8) in HPV-induced CC. As a result, a notable increase of SNHG8 in HPV-induced CC cells was found compared with HPV-negative CC cells. Functionally, it identified that SNHG8 aggravated the cell proliferation and migration in Cell Counting Kit-8 and transwell assays. Besides, flow cytometry apoptosis assay displayed that blockade of SNHG8 exacerbated apoptosis of HPV-positive CC cells. As detected by fluorescence in situ hybridization analysis and subcellular fractionation assay, SNHG8 was primarily expressed in the nucleus and exerted suppressive role on reversion inducing cysteine-rich protein with kazal motifs (RECK) expression, which implied a potential transcriptional regulation of SNHG8 on RECK level. Mechanically, SNHG8 was disclosed to interact with enhancer of zeste homolog 2 (EZH2) based on RNA immunoprecipitation assay. ChIP assay further unveiled the occupancy of EZH2 in the promoter region of RECK. An additional chromatin immunoprecipitation assay highlighted that SNHG8 intensified the enrichment of EZH2 and H3K27me3 in RECK promoter region. Altogether, it reflected that SNHG8 recruited EZH2 to downregulate RECK expression, leading to HPV-induced CC aggravation.
Sustainable Tumor-Suppressive Effect of iPSC-Derived Rejuvenated T Cells Targeting Cervical Cancers
MOLECULAR THERAPY
Authors: Honda, Tadahiro; Ando, Miki; Ando, Jun; Ishii, Midori; Sakiyama, Yumi; Ohara, Kazuo; Toyota, Tokuko; Ohtaka, Manami; Masuda, Ayako; Terao, Yasuhisa; Nakanishi, Mahito; Nakauchi, Hiromitsu; Komatsu, Norio
Abstract
Immunotherapy utilizing induced pluripotent stem cell (iPSC) technology has great potential. Functionally rejuvenated cytotoxic T lymphocytes (CTLs) can survive long-term as young memory T cells in vivo, with continuous tumor eradication. Banking of iPSCs as an unlimited "off-the-shelf" source of therapeutic T cells may be feasible. To generate safer iPSCs, we reprogrammed human papilloma virus type 16 (HPV16) E6-specific CTLs by Sendai virus vector without cotransduction of SV40 large T antigen. The iPSCs efficiently differentiated into HPV16-specific rejuvenated CTLs that demonstrated robust cytotoxicity against cervical cancer. The tumor-suppressive effect of rejuvenated CTLs was stronger and more persistent than that of original peripheral blood CTLs. These rejuvenated HPV16-specific CTLs provide a sustained tumor-suppressive effect even for epithelial cancers and constitute promising immunotherapy for cervical cancer.