GLUT3 ELISA Kit (DEIA-XYA745)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
cultured cells
Species Reactivity
Human
Intended Use
The GLUT3 Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can monitor GLUT3 protein expression profile in cells. The kit can be used for measuring the relative amounts of GLUT3 in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on GLUT3.
Contents of Kit
1. 96-Well Cell Culture Clear-Bottom Microplate: 1 plate
2. 10x TBS: 24 mL (10x), Clear
3. Quenching Buffer: 24 mL (1x), Clear
4. Blocking Buffer: 50 mL (1x), Clear
5. 10x Wash Buffer: 50 mL (10x), Clear
6. 100x Anti-GLUT3 Antibody (Rabbit Polyclonal): 60 μL (100x), Purple
7. 100x Anti-GAPDH Antibody (Mouse Monoclonal): 60 μL (100x), Green
8. HRP-Conjugated Anti-Rabbit IgG Antibody: 6 mL (1x), Glass
9. HRP-Conjugated Anti-Mouse IgG Antibody: 6 mL (1x), Glass
10. Primary Antibody Diluent: 12 mL (1x), Clear
11. Ready-to-Use Substrate: 12 mL (1x), Brown
12. Stop Solution: 12 mL (1x), Clear
13. Crystal Violet Solution: 6 mL (1x), Glass
14. SDS Solution: 24 mL (1x), Clear
15. Adhesive Plate Seals: 4 seals
Storage
4°C/6 Months

Citations


Have you cited DEIA-XYA745 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles

CANCERS

Authors: Aasebo, Elise; Berven, Frode S.; Hovland, Randi; Doskeland, Stein Ove; Bruserud, Oystein; Selheim, Frode; Hernandez-Valladares, Maria

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of the patients who receive the most intensive treatment develop chemoresistant leukemia relapse. Although the leukemogenic events leading to relapse seem to differ between patients (i.e., regrowth from a clone detected at first diagnosis, progression from the original leukemic or preleukemic stem cells), a common characteristic of relapsed AML is increased chemoresistance. The aim of the present study was to investigate at the proteomic level whether leukemic cells from relapsed patients present overlapping molecular mechanisms that contribute to this chemoresistance. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare the proteomic and phosphoproteomic profiles of AML cells derived from seven patients at the time of first diagnosis and at first relapse. At the time of first relapse, AML cells were characterized by increased levels of proteins important for various mitochondrial functions, such as mitochondrial ribosomal subunit proteins (MRPL21, MRPS37) and proteins for RNA processing (DHX37, RNA helicase; RPP40, ribonuclease P component), DNA repair (ERCC3, DNA repair factor IIH helicase; GTF2F1, general transcription factor), and cyclin-dependent kinase (CDK) activity. The levels of several cytoskeletal proteins (MYH14/MYL6/MYL12A, myosin chains; VCL, vinculin) as well as of proteins involved in vesicular trafficking/secretion and cell adhesion (ITGAX, integrin alpha-X; CD36, platelet glycoprotein 4; SLC2A3, solute carrier family 2) were decreased in relapsed cells. Our study introduces new targetable proteins that might direct therapeutic strategies to decrease chemoresistance in relapsed AML.

Concordance between gene expression in peripheral whole blood and colonic tissue in children with inflammatory bowel disease

PLOS ONE

Authors: Palmer, Nathan P.; Silvester, Jocelyn A.; Lee, Jessica J.; Beam, Andrew L.; Fried, Inbar; Valtchinov, Vladimir, I; Rahimov, Fedik; Kong, Sek Won; Ghodoussipour, Saum; Hood, Helen C.; Bousvaros, Athos; Grand, Richard J.; Kunkel, Louis M.; Kohane, Isaac S.

Background Presenting features of inflammatory bowel disease (IBD) are non-specific. We hypothesized that mRNA profiles could (1) identify genes and pathways involved in disease pathogenesis; (2) identify a molecular signature that differentiates IBD from other conditions; (3) provide insight into systemic and colon-specific dysregulation through study of the concordance of the gene expression. Methods Children (8-18 years) were prospectively recruited at the time of diagnostic colonoscopy for possible IBD. We used transcriptome-wide mRNA profiling to study gene expression in colon biopsies and paired whole blood samples. Using blood mRNA measurements, we fit a regression model for disease state prediction that was validated in an independent test set of adult subjects (GSE3365). Results Ninety-eight children were recruited [39 Crohn's disease, 18 ulcerative colitis, 2 IBDU, 39 non-IBD]. There were 1,118 significantly differentially (IBD vs non-IBD) expressed genes in colon tissue, and 880 in blood. The direction of relative change in expression was concordant for 106/112 genes differentially expressed in both tissue types. The regression model from the blood mRNA measurements distinguished IBD vs non-IBD disease status in the independent test set with 80% accuracy using only 6 genes. The overlap of 5 immune and metabolic pathways in the two tissue types was significant (p<0.001). Conclusions Blood and colon tissue from patients with IBD share a common transcriptional profile dominated by immune and metabolic pathways. Our results suggest that peripheral blood expression levels of as few as 6 genes (IL7R, UBB, TXNIP, S100A8, ALAS2, and SLC2A3) may distinguish patients with IBD from non-IBD.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket