G3BP-1 (Phospho-Ser232) ELISA Kit (DEIA-XYA707)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

2 x 96T
cultured cells
Species Reactivity
Human, Mouse
Intended Use
The G3BP-1 (Phospho-Ser232) Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can monitor G3BP-1 protein phosphorylation and expression profile in cells. The kit can be used for measuring the relative amounts of phosphorylated G3BP-1 in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on G3BP-1 phosphorylation.
Contents of Kit
1. 96-Well Cell Culture Clear-Bottom Microplate: 2 plates
2. 10x TBS: 24 mL
3. Quenching Buffer: 24 mL
4. Blocking Buffer: 50 mL
5. 10x Wash Buffer: 50 mL
6. 100x Anti-G3BP-1 (Phospho-Ser232) Antibody (Rabbit Polyclonal): 60 μL, red
7. 100x Anti-G3BP-1 Antibody (Rabbit Polyclonal): 60 μL, purple
8. 100x Anti-GAPDH Antibody (Mouse Monoclonal): 60 μL, green
9. HRP-Conjugated Anti-Rabbit IgG Antibody: 12 mL, glass
10. HRP-Conjugated Anti-Mouse IgG Antibody: 12 mL, glass
11. Primary Antibody Diluent: 12 mL
12. Ready-to-Use Substrate: 12 mL
13. Stop Solution: 12 mL
14. Crystal Violet Solution: 12 mL
15. SDS Solution: 24 mL
16. Adhesive Plate Seals: 4 seals
4°C/6 Months


Have you cited DEIA-XYA707 in a publication? Let us know and earn a reward for your research.

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules


Authors: Yang, Peiguo; Mathieu, Cecile; Kolaitis, Regina-Maria; Zhang, Peipei; Messing, James; Yurtsever, Ugur; Yang, Zemin; Wu, Jinjun; Li, Yuxin; Pan, Qingfei; Yu, Jiyang; Martin, Erik W.; Mittag, Tanja; Kim, Hong Joo; Taylor, J. Paul

The mechanisms underlying ribonucleoprotein (RNP) granule assembly, including the basis for establishing and maintaining RNP granules with distinct composition, are unknown. One prominent type of RNP granule is the stress granule (SG), a dynamic and reversible cytoplasmic assembly formed in eukaryotic cells in response to stress. Here, we show that SGs assemble through liquid-liquid phase separation (LLPS) arising from interactions distributed unevenly across a core protein-RNA interaction network. The central node of this network is G3BP1, which functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations. Moreover, we show that interplay between three distinct intrinsically disordered regions (IDRs) in G3BP1 regulates its intrinsic propensity for LLPS, and this is fine-tuned by phosphorylation within the IDRs. Further regulation of SG assembly arises through positive or negative cooperativity by extrinsic G3BP1-binding factors that strengthen or weaken, respectively, the core SG network.

Stress Granule Formation Attenuates RACK1-Mediated Apoptotic Cell Death Induced by Morusin


Authors: Park, Ye-Jin; Choi, Dong Wook; Cho, Sang Woo; Han, Jaeseok; Yang, Siyoung; Choi, Cheol Yong

Stress granules are membraneless organelles composed of numerous components including ribonucleoproteins. The stress granules are characterized by a dynamic complex assembly in response to various environmental stressors, which has been implicated in the coordinated regulation of diverse biological pathways, to exert a protective role against stress-induced cell death. Here, we show that stress granule formation is induced by morusin, a novel phytochemical displaying antitumor capacity through barely known mechanisms. Morusin-mediated induction of stress granules requires activation of protein kinase R (PKR) and subsequent eIF2 alpha phosphorylation. Notably, genetic inactivation of stress granule formation mediated by G3BP1 knockout sensitized cancer cells to morusin treatment. This protective function against morusin-mediated cell death can be attributed at least in part to the sequestration of receptors for activated C kinase-1 (RACK1) within the stress granules, which reduces caspase-3 activation. Collectively, our study provides biochemical evidence for the role of stress granules in suppressing the antitumor capacity of morusin, proposing that morusin treatment, together with pharmacological inhibition of stress granules, could be an efficient strategy for targeting cancer.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket