Human CIRBP ELISA Matched Antibody Pair (ABPR-0208)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Species Reactivity
Human
Intended Use
This antibody pair set comes with matched antibody pair to detect and quantify protein level of human CIRBP.
Reconstitution And Storage
Store reagents of the antibody pair set at -20°C or lower. Please aliquot to avoid repeated freeze thaw cycle. Reagents should be returned to -20°C storage immediately after use.

Citations


Have you cited ABPR-0208 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Gene expression analysis of ovine prepubertal testicular tissue vitrified with a novel cryodevice (E.Vit)

JOURNAL OF ASSISTED REPRODUCTION AND GENETICS

Authors: Bebbere, Daniela; Pinna, Sara; Nieddu, Stefano; Natan, Dity; Arav, Amir; Ledda, Sergio

Purpose Testicular tissue cryopreservation prior to gonadotoxic therapies is a method to preserve fertility in children. However, the technique still requires development, especially when the tissue is immature and rather susceptible to stress derived from in vitro manipulation. This study aimed to investigate the effects of vitrification with a new cryodevice (E.Vit) on cell membrane integrity and gene expression of prepubertal testicular tissue in the ovine model. Methods Pieces of immature testicular tissue (1 mm(3)) were inserted into "E.Vit" devices and vitrified with a two-step protocol. After warming, tissues were cultured in vitro and cell membrane integrity was assessed after 0, 2, and 24 h by trypan blue exclusion test. Controls consisted of non-vitrified tissue analyzed after 0, 2, and 24 h in vitro culture (IVC). Expression of genes involved in transcriptional stress response (BAX, SOD1, CIRBP, HSP90AB1), cell proliferation (KIF11), and germ- (ZBDB16, TERT, POU5F1, KIT) and somatic- (AR, FSHR, STAR) cell specific markers was evaluated 2 and 24 h after warming. Results Post-warming trypan blue staining showed the survival of most cells, although membrane integrity immediately after warming (66.00%4.73) or after 2 h IVC (59.67%+/- 4.18) was significantly lower than controls (C0h 89.67%+/- 1.45). Extended post-warming IVC (24 h) caused an additional decrease to 31%+/- 3.46 (P< 0.05). Germ- and somatic-cell specific markers showed the survival of both cell types after cryopreservation and IVC. All genes were affected by cryopreservation and/or IVC, and moderate stress conditions were indicated by transcriptional stress response. Conclusions Vitrification with the cryodevice E.Vit is a promising strategy to cryopreserve prepubertal testicular tissue.

PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA

Authors: Chen, Jung-Kuei; Lin, Wen-Ling; Chen, Zhang; Liu, Hung-wen

Maintenance of genome integrity is critical for both faithful propagation of genetic information and prevention of mutagenesis induced by various DNA damage events. Here we report cold-inducible RNA-binding protein (CIRBP) as a newly identified key regulator in DNA double-strand break (DSB) repair. On DNA damage, CIRBP temporarily accumulates at the damaged regions and is poly(ADP ribosyl) ated by poly(ADP ribose) polymerase-1 (PARP-1). Its dissociation from the sites of damage may depend on its phosphorylation status as mediated by phosphatidylinositol 3-kinase-related kinases. In the absence of CIRBP, cells showed reduced gamma H2AX, Rad51, and 53BP1 foci formation. Moreover, CIRBP-depleted cells exhibited impaired homologous recombination, impaired nonhomologous endjoining, increased micronuclei formation, and higher sensitivity to gamma irradiation, demonstrating the active involvement of CIRBP in DSB repair. Furthermore, CIRBP depleted cells exhibited defects in DNA damage-induced chromatin association of the MRN complex (Mre11, Rad50, and NBS1) and ATM kinase. CIRBP depletion also reduced phosphorylation of a variety of ATM substrate proteins and thus impaired the DNA damage response. Taken together, these results reveal a previously unrecognized role for CIRBP in DSB repair.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket