CDK1/CDC2 (Phospho-Thr14) ELISA Kit (DEIA-XYA384)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
2 x 96T
Sample
cultured cells
Species Reactivity
Human, Mouse, Rat
Intended Use
The CDK1/CDC2 (Phospho-Thr14) Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can monitor CDK1/CDC2 protein phosphorylation and expression profile in cells. The kit can be used for measuring the relative amounts of phosphorylated CDK1/CDC2 in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on CDK1/CDC2 phosphorylation.
Contents of Kit
1. 96-Well Cell Culture Clear-Bottom Microplate: 2 plates
2. 10x TBS: 24 mL (10x)
3. Quenching Buffer: 24 mL (1x)
4. Blocking Buffer: 50 mL (1x)
5. 10x Wash Buffer: 50 mL (10x)
6. 100x Anti-CDK1/CDC2 (Phospho-Thr14) Antibody (Rabbit Polyclonal): 60 μL (100x), Red
7. 100x Anti-CDK1/CDC2 Antibody (Rabbit Polyclonal): 60 μL (100x), Purple
8. 100x Anti-GAPDH Antibody (Mouse Monoclonal): 60 μL (100x), Green
9. HRP-Conjugated Anti-Rabbit IgG Antibody: 12 mL (1x), Glass
10. HRP-Conjugated Anti-Mouse IgG Antibody: 12 mL (1x), Glass
11. Primary Antibody Diluent: 12 mL (1x)
12. Ready-to-Use Substrate: 12 mL (1x), Brown
13. Stop Solution: 12 mL (1x)
14. Crystal Violet Solution: 12 mL (1x), Glass
15. SDS Solution: 24 mL (1x)
16. Adhesive Plate Seals: 4 seals
Storage
4°C/6 Months

Citations


Have you cited DEIA-XYA384 in a publication? Let us know and earn a reward for your research.

Related Products


Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Paris polyphylla ethanol extract induces G2/M arrest and suppresses migration and invasion in bladder cancer

TRANSLATIONAL CANCER RESEARCH

Authors: Liu, Zhiyong; Sun, Zhonghua; Zhang, Denglu; Ma, Chenchen; Jiang, Yuehua; Cao, Guangshang; Sun, Chao; Li, Kailin; Xu, Dawei; Liu, Jiang; Zhao, Shengtian

Background: Paris polypbylla is a traditional Chinese medicinal herb with multiple antitumor activities, but the role of P. polyphylla in bladder cancer (BC) is under investigation. This study aims to examine the antitumor activities of P. polyphylla ethanol extract (PPE) on BC cells and elucidate the underlying mechanisms. Methods: Viable cells were counted using the trypan blue exclusion assay. The cell cycle was analyzed using flow cytometry, and scratch wound-healing and transwell assays were used to evaluate cell migration and invasion abilities, respectively. The protein expression levels were determined by western blotting. A xenograft model was used to assess the in vivo inhibitory effect of PPE on BC tumor growth. Results: Our results showed that PPE inhibited the growth of BC cells in vivo and in vitro. Mechanistically, PPE regulated the levels of cell cycle-associated proteins, with PPE-induced G2/M phase arrest occurring through cyclin-dependent kinase inhibitor 1(CDKN1A) accumulation and cyclin B1 (CCNB1)/cyclindependent kinase 1 (CDK1) inhibition. BC tumor growth was also inhibited by PPE treatment. Moreover, the migration and invasion abilities of J82 cells were suppressed through modulating epithelial-mesenchymal transition (EMT) regulatory factors with upregulation of cadherin-1 (CDH1) and downregulation of cadherin-2 (CDH2), snail family transcriptional repressor 2 (SNAI2), and twist family bHLH transcription factor 1 (TWIST1). Conclusions: PPE inhibited cell growth, induced G2/M arrest, and suppressed the migration and invasion of J82 cells. BC tumor growth in vivo was also inhibited by PPE. Our results lay the foundation for further studies on the antitumor mechanisms of PPE.

Connections between the cell cycle, cell adhesion and the cytoskeleton

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES

Authors: Jones, Matthew C.; Zha, Junzhe; Humphries, Martin J.

Cell division, the purpose of which is to enable cell replication, and in particular to distribute complete, accurate copies of genetic material to daughter cells, is essential for the propagation of life. At a morphological level, division not only necessitates duplication of cellular structures, but it also relies on polar segregation of this material followed by physical scission of the parent cell. For these fundamental changes in cell shape and positioning to be achieved, mechanisms are required to link the cell cycle to the modulation of cytoarchitecture. Outside of mitosis, the three main cytoskeletal networks not only endow cells with a physical cytoplasmic skeleton, but they also provide a mechanism for spatio-temporal sensing via integrin-associated adhesion complexes and site-directed delivery of cargoes. During mitosis, some interphase functions are retained, but the architecture of the cytoskeleton changes dramatically, and there is a need to generate a mitotic spindle for chromosome segregation. An economical solution is to re-use existing cytoskeletal molecules: transcellular actin stress fibres remodel to create a rigid cortex and a cytokinetic furrow, while unipolar radial microtubules become the primary components of the bipolar spindle. This remodelling implies the existence of specific mechanisms that link the cell-cycle machinery to the control of adhesion and the cytoskeleton. In this article, we review the intimate three-way connection between microenvironmental sensing, adhesion signalling and cell proliferation, particularly in the contexts of normal growth control and aberrant tumour progression. As the morphological changes that occur during mitosis are ancient, the mechanisms linking the cell cycle to the cytoskeleton/adhesion signalling network are likely to be primordial in nature and we discuss recent advances that have elucidated elements of this link. A particular focus is the connection between CDK1 and cell adhesion.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket