Human CA9 ELISA Matched Antibody Pair (ABPR-0130)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Species Reactivity
Intended Use
This antibody pair set comes with matched antibody pair to detect and quantify protein level of human CA9.
General Description
Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide. They participate in a variety of biological processes, including respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show extensive diversity in tissue distribution and in their subcellular localization. CA IX is a transmembrane protein and is one of only two tumor-associated carbonic anhydrase isoenzymes known. It is expressed in all clear-cell renal cell carcinoma, but is not detected in normal kidney or most other normal tissues. It may be involved in cell proliferation and transformation. This gene was mapped to 17q21.2 by fluorescence in situ hybridization, however, radiation hybrid mapping localized it to 9p13-p12.
Reconstitution And Storage
Store reagents of the antibody pair set at -20°C or lower. Please aliquot to avoid repeated freeze thaw cycle. Reagents should be returned to -20°C storage immediately after use.


Have you cited ABPR-0130 in a publication? Let us know and earn a reward for your research.

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade


Authors: Ohnishi, Yuichi; Sakamoto, Tsukasa; Li, Zhengguang; Yasui, Hiroki; Hamada, Hiroyuki; Kubo, Hirohito; Nakajima, Masahiro

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. OSCC cells are highly invasive, a characteristic that involves epithelial-mesenchymal transition (EMT); the conversion of immotile epithelial cells into motile mesenchymal cells. EMT is involved in the progression of various types of cancer by promoting tumour cell scattering and conferring to these cells cancer stem cell (CSC)-like characteristics, such as self-renewal. Hepatocyte growth factor (HGF) signalling plays an important role in EMT induction and, therefore, contributes to cell invasion and metastasis in cancer. Due to its potential chemopreventative and anti-tumour activities, curcumin has attracted much interest and has been shown to act as a potent EMT inhibitor in various types of cancer. However, at present, the potential effects of curcumin on HGF-induced EMT in OSCC have not been investigated. Here, we demonstrated that HGF signalling could induce EMT in the HSC4 and Ca9-22 OSCC cell lines via the HGF receptor c-Met and downstream activation of the pro-survival ERK pathway. Notably, curcumin inhibited HGF-induced EMT and cell motility in HSC-4 and Ca9-22 cells via c-Met blockade. Therefore, these findings establish curcumin as a candidate drug for OSCC treatment. Furthermore, curcumin was able to effectively inhibit the HGF-induced increase in the levels of vimentin by downregulating the expression of phosphorylated c-Met, an ERK. In conclusion, the results of the present study demonstrated that curcumin was able to reverse HGF-induced EMT, possibly by inhibiting c-Met expression in oral cancer cells, providing a strong basis for the development of novel approaches for the treatment of oral cancer.

Protein profiling of fine-needle aspirates reveals subtype-associated immune signatures and involvement of chemokines in breast cancer


Authors: Franzen, Bo; Alexeyenko, Andrey; Kamali-Moghaddam, Masood; Hatschek, Thomas; Kanter, Lena; Ramqvist, Torbjorn; Kierkegaard, Jonas; Masucci, Giuseppe; Auer, Gert; Landegren, Ulf; Lewensohn, Rolf

There are increasing demands for informative cancer biomarkers, accessible via minimally invasive procedures, both for initial diagnostics and for follow-up of personalized cancer therapy, including immunotherapy. Fine-needle aspiration (FNA) biopsy provides ready access to relevant tissue samples; however, the minute amounts of sample require sensitive multiplex molecular analysis to be of clinical biomarker utility. We have applied proximity extension assays (PEA) to analyze 167 proteins in FNA samples from patients with breast cancer (BC; n = 25) and benign lesions (n = 32). We demonstrate that the FNA BC samples could be divided into two main clusters, characterized by differences in expression levels of the estrogen receptor (ER) and the proliferation marker Ki67. This clustering corresponded to some extent to established BC subtypes. Our analysis also revealed several proteins whose expression levels differed between BC and benign lesions (e.g., CA9, GZMB, IL-6, VEGFA, CXCL11, PDL1, and PCD1), as well as several chemokines correlating with ER and Ki67 status (e.g., CCL4, CCL8, CCL20, CXCL8, CXCL9, and CXCL17). Finally, we also identified three signatures that could predict Ki67 status, ER status, and tumor grade, respectively, based on a small subset of proteins, which was dominated by chemokines. To our knowledge, expression profiles of CCL13 in benign lesions and BC have not previously been described but were shown herein to correlate with proliferation (P = 0.00095), suggesting a role in advanced BC. Given the broad functional range of the proteins analyzed, immune-related proteins were overrepresented among the observed alterations. Our pilot study supports the emerging role of chemokines in BC progression. Due to the minimally traumatic sampling and clinically important molecular information for therapeutic decisions, this methodology is promising for future immunoscoring and monitoring of treatment efficacy in BC.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket