C/EBP-beta ELISA Kit (DEIA-XYA313)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Size
96T
Sample
cultured cells
Species Reactivity
Human, Mouse, Rat
Intended Use
The C/EBP-β Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can monitor C/EBP-β protein expression profile in cells. The kit can be used for measuring the relative amounts of C/EBP-β in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on C/EBP-β.
Contents of Kit
1. 96-Well Cell Culture Clear-Bottom Microplate: 1 plate
2. 10x TBS: 24 mL (10x), Clear
3. Quenching Buffer: 24 mL (1x), Clear
4. Blocking Buffer: 50 mL (1x), Clear
5. 10x Wash Buffer: 50 mL (10x), Clear
6. 100x Anti-C/EBP-β Antibody (Rabbit Polyclonal): 60 μL (100x), Purple
7. 100x Anti-GAPDH Antibody (Mouse Monoclonal): 60 μL (100x), Green
8. HRP-Conjugated Anti-Rabbit IgG Antibody: 6 mL (1x), Glass
9. HRP-Conjugated Anti-Mouse IgG Antibody: 6 mL (1x), Glass
10. Primary Antibody Diluent: 12 mL (1x), Clear
11. Ready-to-Use Substrate: 12 mL (1x), Brown
12. Stop Solution: 12 mL (1x), Clear
13. Crystal Violet Solution: 6 mL (1x), Glass
14. SDS Solution: 24 mL (1x), Clear
15. Adhesive Plate Seals: 4 seals
Storage
4°C/6 Months

Citations


Have you cited DEIA-XYA313 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB

NATURE

Authors: Lynch, Vincent J.; May, Gemma; Wagner, Guenter P.

There is an emerging consensus that gene regulation evolves through changes in cis-regulatory elements(1,2) and transcription factors(3-6). Although it is clear how nucleotide substitutions in cis-regulatory elements affect gene expression, it is not clear how amino-acid substitutions in transcription factors influence gene regulation(4-10). Here we show that amino-acid changes in the transcription factor CCAAT/enhancer binding protein-beta (CEBPB, also known as C/EBP-beta) in the stem-lineage of placental mammals changed the way it responds to cyclic AMP/protein kinase A (cAMP/PKA) signalling. By functionally analysing resurrected ancestral proteins, we identify three amino-acid substitutions in an internal regulatory domain of CEBPB that are responsible for the novel function. These amino-acid substitutions reorganize the location of key phosphorylation sites, introducing a new site and removing two ancestral sites, reversing the response of CEBPB to GSK-3 beta-mediated phosphorylation from repression to activation. We conclude that changing the response of transcription factors to signalling pathways can be an important mechanism of gene regulatory evolution.

AR negative triple negative or "quadruple negative" breast cancers in African American women have an enriched basal and immune signature

PLOS ONE

Authors: Davis, Melissa; Tripathi, Shweta; Hughley, Raymond; He, Qinghua; Bae, Sejong; Karanam, Balasubramanyam; Martini, Rachel; Newman, Lisa; Colomb, Windy; Grizzle, William; Yates, Clayton

There is increasing evidence that Androgen Receptor (AR) expression has prognostic usefulness in Triple negative breast cancer (TNBC), where tumors that lack AR expression are considered "Quadruple negative" Breast Cancers ("QNBC"). However, a comprehensive analysis of AR expression within all breast cancer subtypes or stratified by race has not been reported. We assessed AR mRNA expression in 925 tumors from The Cancer Genome Atlas (TCGA), and 136 tumors in 2 confirmation sets. AR protein expression was determined by immunohistochemistry in 197 tumors from a multi-institutional cohort, for a total of 1258 patients analyzed. Cox hazard ratios were used to determine correlations to PAM50 breast cancer subtypes, and TNBC subtypes. Overall, AR-negative patients are diagnosed at a younger age compared to AR-positive patients, with the average age of AA AR-negative patients being, 49. AA breast tumors express AR at lower rates compared to Whites, independent of ER and PR expression (p<0.0001). AR-negative patients have a (66.60; 95% CI, 32-146) odds ratio of being basal-like compared to other PAM50 subtypes, and this is associated with an increased time to progression and decreased overall survival. AA "QNBC" patients predominately demonstrated BL1, BL2 and IM subtypes, with differential expression of E2F1, NFKBIL2, CCL2, TGFB3, CEBPB, PDK1, IL12RB2, IL2RA, and SOS1 genes compared to white patients. Immune checkpoint inhibitors PD-1, PD-L1, and CTLA-4 were significantly upregulated in both overall "QNBC" and AA "QNBC" patients as well. Thus, AR could be used as a prognostic marker for breast cancer, particularly in AA "QNBC" patients.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:

Related Products

Related Resources

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

Inquiry Basket