7-Panel Drug Test (Cassette) (Any Drug Combination) (DTS333)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Sample
urine
Intended Use
All of DOA Panel Drug Test is an immunochromatography based one step in vitro test. It is designed for qualitative determination of drug substances in human urine specimens. This assay may be used in the point of care setting. Below is a list of cut-off concentrations for each drug using our test.
Storage
The test device should be stored at 2 to 30°C and will be effective until the expiration date stated on the package. The product is humidity-sensitive and should be used immediately after being open. Any improperly sealed product should be discarded.
Sensitivity
The cut-off concentrations (sensitivity level) of DOA Panel Drug Test are determined to be: AMP 1000 ng/ml, BAR, 300 ng/ml, BZO 300 ng/ml, BUP 10 ng/ml, COC 300 ng/ml, EDDP 100 ng/ml, KET 1000 ng/ml, MTD 300 ng/ml, MET 1000 ng/ml, MDMA 500 ng/ml, OPI 300

Citations


Have you cited DTS333 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Genetic variation in the farnesoid X-receptor predicts Crohn's disease severity in female patients

SCIENTIFIC REPORTS

Authors: Wilson, Aze; Wang, Qian; Almousa, Ahmed A.; Jansen, Laura E.; Choi, Yun-hee; Schwarz, Ute I.; Kim, Richard B.

The farnesoid X receptor (FXR) is implicated in Crohn's disease (CD) pathogenesis. It is unclear how genetic variation in FXR impacts CD severity versus genetic variation in nuclear receptors such as pregnane X receptor (PXR) and the multi-drug resistance protein 1 (MDR1, ABCB1). To evaluate FXR-1G>T as a genomic biomarker of severity in CD and propose a plausible molecular mechanism. A retrospective study (n=542) was conducted in a Canadian cohort of CD patients. Genotypic analysis (FXR-1G>T, MDR1 3435C>T and PXR -25385C>T) as well as determination of the FXR downstream product, fibroblast growth factor (FGF) 19 was performed. Primary outcomes included risk and time to first CD-related surgery. The effect of estrogen on wild type and variant FXR activity was assessed in HepG2 cells. The FXR-1GT genotype was associated with the risk of (odds ratio, OR=3.34, 95% CI=1.58-7.05, p=0.002) and earlier progression to surgery (hazard ratio, HR=3.00, 95% CI=1.86-4.83, p<0.0001) in CD. Female carriers of the FXR-1GT genotype had the greatest risk of surgery (OR=14.87 95% CI=4.22-52.38, p<0.0001) and early progression to surgery (HR=6.28, 95% CI=3.62-10.90, p<0.0001). Women carriers of FXR-1GT polymorphism had a three-fold lower FGF19 plasma concentration versus women with FXR-1GG genotype (p<0.0001). In HepG2 cells cotransfected with estrogen receptor (ER) and FXR, presence of estradiol further attenuated variant FXR activity. MDR1 and PXR genotypes were not associated with surgical risk. Unlike MDR1 and PXR, FXR-1GT genetic variation is associated with earlier and more frequent surgery in women with CD. This may be through ER-mediated attenuation of FXR activation.

Photothermal-assisted antibacterial application of graphene oxide-Ag nanocomposites against clinically isolated multi-drug resistant Escherichia coli

ROYAL SOCIETY OPEN SCIENCE

Authors: Chen, Yuqing; Wu, Wei; Xu, Zeqiao; Jiang, Cheng; Han, Shuang; Ruan, Jun; Wang, Yong

In the field of public health, treatment of multidrug-resistant (MDR) bacterial infection is a great challenge. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as antibacterial agent. Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials (graphene oxide, silver nanoparticles, GO-Ag), and synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. Treatment with 14.0 mu g ml(-1) GO-Ag could greatly inhibit bacteria growth; remaining bacteria viabilities were 4.4% and 4.1% for MDR-1 and MDR-2 E. coli bacteria, respectively. In addition, with assistance of photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites as low as 7.0 mu g ml(-1). Fluorescence imaging and morphology characterization uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Cytotoxicity results of GO-Ag using human-derived cell lines (HEK 293T, Hep G2) suggested more than 80% viability remained at 7.0 mu g ml(-1). All the results proved that GO-Ag nanocomposites are efficient antibacterial agent against multidrug-resistant E. coli.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket