Anti-TTX monoclonal antibody, FITC (DMABA-0215)

Mouse Anti-TTX monoclonal antibody for IA

Specifications


Host Species
Mouse
Antibody Isotype
IgG
Clone
psc214778
Species Reactivity
N/A
Conjugate
FITC

Applications


Application Notes
IF: 1:50-200; ICC: 1:50-200
*Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own experiment using appropriate negative and positive controls.

Target


Alternative Names
TTX; Tetrodotoxin

Product Background


Antigen Description
Tetrodotoxin, frequently abbreviated as TTX, is a potent neurotoxin with no known antidote. There have been successful tests of a possible antidote in mice, but further tests must be carried out to determine efficacy in humans. Fampridine has been shown to reverse tetrodotoxin toxicity in animal experiments. Tetrodotoxin blocks action potentials in nerves by binding to the voltage-gated, fast
sodium channels in nerve cell membranes, essentially preventing any affected nerve cells from firing by blocking the channels used in the process. The binding site of this toxin is located at the pore opening of the voltage-gated Na+ channel. Its name derives from Tetraodontiformes, the name of the order that includes the pufferfish, porcupinefish, ocean sunfish or mola, and triggerfish, several
species of which carry the toxin. Although tetrodotoxin was discovered in these fish and found in several other animals (e. g. , blue-ringed octopus, rough-skinned newt, and Naticidae) it is actually produced by certain symbiotic bacteria, such as Pseudoalteromonas tetraodonis, certain species of Pseudomonas and Vibrio, as well as some others that reside within these animals.

Citations


Have you cited DMABA-0215 in a publication? Let us know and earn a reward for your research.

Customer Reviews


Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket

References


Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons

PHARMACOLOGY RESEARCH & PERSPECTIVES

Authors: Lambert, Mads Odum; Ipsen, Theis Hojland; Kohlmeier, Kristi Anne

Cocaine has strong reinforcing properties, which underlie its high addiction potential. Reinforcement of use of addictive drugs is associated with rises in dopamine (DA) in mesoaccumbal circuitry. Excitatory afferent input to mesoaccumbal circuitry sources from the laterodorsal tegmental nucleus (LDT). Chronic, systemic cocaine exposure has been shown to have cellular effects on LDT cells, but acute actions of local application have never been demonstrated. Using calcium imaging, we show that acute application of cocaine to mouse brain slices induces calcium spiking in cells of the LDT. Spiking was attenuated by tetrodotoxin (TTX) and low calcium solutions, and abolished by prior exhaustion of intracellular calcium stores. Further, DA receptor antagonists reduced these transients, whereas DA induced rises with similar spiking kinetics. Amphetamine, which also results in elevated levels of synaptic DA, but via a different pharmacological action than cocaine, induced calcium spiking with similar profiles. Although large differences in spiking were not noted in an animal model associated with a heightened proclivity of acquiring addiction-related behavior, the prenatal nicotine exposed mouse (PNE), subtle differences in cocaine's effect on calcium spiking were noted, indicative of a reduction in action of cocaine in the LDT associated with exposure to nicotine during gestation. When taken together, our data indicate that acute actions of cocaine do include effects on LDT cells. Considering the role of intracellular calcium in cellular excitability, and of the LDT in addiction circuitry, our data suggest that cocaine effects in this nucleus may contribute to the high addiction potential of this drug.

Acute regulation of intestinal ion transport and permeability in response to luminal nutrients: the role of the enteric nervous system

AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY

Authors: Cavin, Jean-Baptiste; Cuddihey, Hailey; MacNaughton, Wallace K.; Sharkey, Keith A.

The small intestine regulates barrier function to absorb nutrients while avoiding the entry of potentially harmful substances or bacteria. Barrier function is dynamically regulated in part by the enteric nervous system (ENS). The role of the ENS in regulating barrier function in response to luminal nutrients is not well understood. We hypothesize that the ENS regulates intestinal permeability and ion flux in the small intestine in response to luminal nutrients. Segments of jejunum and ileum from mice were mounted in Ussing chambers. Transepithelial electrical resistance (TER), short-circuit current (I-sc), and permeability to 4-kDa FITC-dextran (FD4) were recorded after mucosal stimulation with either glucose, fructose, glutamine (10 mM), or 5% Intralipid. Mucosal lipopolysaccharide (1 mg/mL) was also studied. Enteric neurons were inhibited with tetrodotoxin (TTX; 0.5 mu M) or activated with veratridine (10 mu M). Enteric glia were inhibited with the connexin 43 blocker Gap26 (20 mu M). Glucose, glutamine, Intralipid, and veratridine acutely modified I-sc in the jejunum and ileum, but the effect of nutrients on I-sc was insensitive to TTX. TTX, Gap26, and veratridine treatment did not affect baseline TER or permeability. Intralipid acutely decreased permeability to FD4, while LPS increased it. TTX pretreatment abolished the effect of Intralipid and exacerbated the LPS-induced increase in permeability. Luminal nutrients and enteric nerve activity both affect ion flux in the mouse small intestine acutely but independently of each other. Neither neuronal nor glial activity is required for the maintenance of baseline intestinal permeability; however, neuronal activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. NEW & NOTEWORTHY Luminal nutrients and enteric nerve activity both affect ion transport in the mouse small intestine acutely, but independently of each other. Activation or inhibition of the enteric neurons does not affect intestinal permeability, but enteric neural activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. The enteric nervous system regulates epithelial homeostasis in the small intestine in a time-dependent, region- and stimulus-specific manner.

Online Inquiry

Name:
Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket