Anti-IFITM2 monoclonal antibody (CABT-30117MH)


Host Species
Antibody Isotype
IgG2a, κ
Species Reactivity
Recombinant fragment: MNHIVQTFSP VNSGQPPNYE MLKEEQEVAM LGAPHNPAPP TSTVIHIRSE TSVPDHVVW , corresponding to amino acids 1-60 of Human IFITM2with a 26 kDa tag


Application Notes
WB: 1 μg/ml;
*Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own experiment using appropriate negative and positive controls.


Alternative Names
IFITM2; interferon induced transmembrane protein 2 (1-8D); interferon-induced transmembrane protein 2; 1 8D; 1 8D; IFITM 2
Entrez Gene ID
UniProt ID

Product Background

Cytokine Signaling in Immune system, organism-specific biosystem; Immune System, organism-specific biosystem; Interferon Signaling, organism-specific biosystem; Interferon alpha/beta signaling, organism-specific biosystem;


Have you cited CABT-30117MH in a publication? Let us know and earn a reward for your research.

Related Products

Custom Antibody Labeling

We offer labeled antibodies using our catalogue antibody products and a broad range of intensely fluorescent dyes and labels including HRP, biotin, ALP, Alexa Fluor® dyes, DyLight® Fluor dyes, R-phycoerythrin (R-PE), at scales from less than 100 μg up to 1 g of IgG antibody. Learn More

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?


Authors: Gerovska, Daniela; Arauzo-Bravo, Marcos J.

Does primordial germ cell (PGC) activation start before mouse embryo implantation, and does the possible regulation of the DNA (cytosine-5-)-methyltransferase 3-like (Dnmt3l) by transcription factor AP-2, gamma (TCFAP2C) have a role in this activation and in the primitive endoderm (PE)-epiblast (EPI) lineage specification? A burst of expression of PGC markers, such as Dppa3/Stella, Ifitm2/Fragilis, Fkbp6 and Prdm4, is observed from embryonic day (E) 3.25, and some of them, together with the late germ cell markers Zp3, Mcf2 and Morc1, become restricted to the EPI subpopulation at E4.5, while the dynamics analysis of the PE-EPI transitions in the single-cell data suggests that TCFAP2C transitorily represses Dnmt3l in EPI cells at E3.5 and such repression is withdrawn with reactivation of Dnmt3l expression in PE and EPI cells at E4.5. In the mouse preimplantation embryo, cells with the same phenotype take different fates based on the orchestration between topological clues (cell polarity, positional history and division orientation) and gene regulatory rules (at transcriptomics and epigenomics level), prompting the proposal of positional, stochastic and combined models explaining the specification mechanism. PGC specification starts at E6.0-6.5 post-implantation. In view of the important role of DNA methylation in developmental events, the cross-talk between some transcription factors and DNA methyltransferases is of particular relevance. TCFAP2C has a CpG DNA methylation motif that is not methylated in pluripotent cells and that could potentially bind on DNMT3L, the stimulatory DNA methyltransferase co-factor that assists in the process of de novo DNA methylation. Chromatin-immunoprecipitation analysis has demonstrated that Dnmt3l is indeed a target of TCFAP2C. We aimed to assess the timing of early preimplantation events and to understand better the segregation of the inner cell mass (ICM) into PE and EPI. We designed a single-cell transcriptomics dynamics computational study to identify markers of the PE-EPI bifurcation in ICM cells through searching for statistically significant (using the Student's t-test method) differently expressed genes (DEGs) between PE and EPI cells from E3.5 to E4.5. The DEGs common for E3.5 and E4.5 were used as the markers defining the steady states. We collected microarray and next-generation sequencing transcriptomics data from public databases from bulk populations and single cells from mice at E3.25, E3.5 and E4.5. The results are based on three independent single-cell transcriptomics data sets, with a fold change of 3 and P-value < 0.01 for the DEG selection. The dynamics analysis revealed new transitory E3.5 and steady PE and EPI markers. Among the transitory E3.5 PE markers (Dnmt3l, Dusp4, Cpne8, Akap13, Dcaf12l1, Aaed1, B4galt6, BC100530, Rnpc3, Tfpi, Lgalsl, Ckap4 and Fbxl20), several (Dusp4, Akap13, Cpn8, Dcaf12l1 and Tfpi) are related to the extracellular regulated kinase pathway. We also identified new transitory E3.5 EPI markers (Sgk1, Mal, Ubxn2a, Atg16l2, Gm13102, Tcfap2c, Hexb, Slc1a1, Svip, Liph and Mier3), six new stable PE markers (Sdc4, Cpn1, Dkk1, Havcr1, F2r/Par1 and Slc7a6os) as well as three new stable EPI markers (Zp3, Mcf2 and Hexb), which are known to be late stage germ cell markers. We found that mouse PGC marker activation starts at least at E3.25 preimplantation. The transcriptomics dynamics analyses support the regulation of Dnmt3l expression by TCFAP2C. Since the regulation of Dnmt3l by TCFAP2C is based on computational prediction of DNA methylation motifs, Chip-Seq and transcriptomics data, functional studies are required to validate this result. We identified a collection of previously undescribed E3.5-specific PE and EPI markers, and new steady PE and EPI markers. Identification of these genes, many of which encode cell membrane proteins, will facilitate the isolation and characterization of early PE and EPI populations. Since it is so well established in the literature that mouse PGC specification is a post-implantation event, it was surprising for us to see activation of PGC markers as early as E3.25 preimplantation, and identify the newly found steady EPI markers as late germ cell markers. The discovery of such early activation of PGC markers has important implications in the derivation of germ cells from pluripotent cells (embryonic stem cells or induced pluripotent stem cells), since the initial stages of such derivation resemble early development. The early activation of PGC markers points out the difficulty of separating PGC cells from pluripotent populations. Collectively, our results suggest that the combining of the precision of single-cell omics data with dynamic analysis of time-series data can establish the timing of some developmental stages as earlier than previously thought.

Relative mRNA Expression Levels of Restriction Factors and Antiviral Genes in Fetal and Adult Human Monocytes and Monocyte-Derived Macrophages


Authors: Trang, Karen; Saraiva Raposo, Rui Andre; Lowe, Margaret M.; Krow-Lucal, Elisabeth R.; Yonemoto, Wes; Cabido, Vinicius D.; SenGupta, Devi; McCune, Joseph M.

Among untreated HIV-infected pregnant women, the frequency of mother-to-child transmission of HIV is low (5-10%), with most infections occurring at or after birth. Given findings that fetal and adult monocytes are distinct from one another in terms of basal transcriptional profiles, and in phosphorylation of signal transducer and activators of transcription in response to cytokines, we hypothesized that fetal CD14+CD16- monocyte and monocyte-derived macrophages (MDMs) might, compared to their adult counterparts, express higher levels of transcripts for restriction factors and antiviral factors at baseline and/or after stimulation with cytokines that might be induced upon transmission of HIV in utero, for example, IFN alpha, IFN gamma, and IL-6. We carried out these experiments and noted that a few genes, including APOBEC3B, APOBEC3C, and IFITM2, were expressed to a greater degree in fetal monocytes compared to adults. Similarly, the expression levels of APOBEC3F and TRIM32 were greater in fetal MDMs. However, most of these differences were not observed after stimulation with cytokines and the vast majority of antiviral genes were more highly expressed in adults. Therefore, the results of this study are not consistent with the hypothesis that increased expression of antiviral genes in fetal myeloid cells confers immune protection to fetuses in utero.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket