Product Background
Gene summary
H3F3A (H3 Histone, Family 3A) is a Protein Coding gene. Diseases associated with H3F3A include blepharophimosis-intellectual disability syndrome, sbbys type and ohdo syndrome. Among its related pathways are Platelet activation, signaling and aggregation and Gene Expression. GO annotations related to this gene include protein heterodimerization activity and RNA polymerase II distal enhancer sequence-specific DNA binding. An important paralog of this gene is HIST2H3D. Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene contains introns and its mRNA is polyadenylated, unlike most histone genes. The protein encoded is a replication-independent member of the histone H3 family.
Antigen Description
Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Histone H3. 3 is a protein that in humans is encoded by the H3F3A gene.
Pathway
Alcoholism, organism-specific biosystem; Alcoholism, conserved biosystem; Amyloids, organism-specific biosystem; Disease, organism-specific biosystem; Factors involved in megakaryocyte development and platelet production, organism-specific biosystem; Gene Expression, organism-specific biosystem; Hemostasis, organism-specific biosystem.