Amphetamine Rapid Test (DTS126)

Regulatory status: For research use only, not for use in diagnostic procedures.

Write a review

Intended Use
The CD Amphetamine Screen Test is a rapid, visual, lateral flow, competitive, immunochromatographic assay for the qualitative detection of amphetamine and its metabolites in human urine. These in vitro diagnostic screening tests are based on immunoassay principles and are designed specifically for the assay and identification of amphetamine and its metabolites at a cut-off level of 1000 ng/mL or higher, as set by SAMHSA.
The test devices supplied can be stored at room temperature or refrigerated (2-28°C) and will remain stable until the expiration date. Do Not Freeze.
The CD Amphetamine Screen Tests have been designed for detection of amphetamine in urine at the detection sensitivity of 1000 ng/ml, as suggested for immunoassay methods by SAMHSA. In sensitivity studies performed, samples with concentrations of amphetamine equal to or higher than 1000 ng/ml were identified as positive results for all samples. Thus, the cut-off level of the CD Amphetamine Screen Test was determined to be 1000 ng/ml for both the Test Card and Test Strip devices.


Have you cited DTS126 in a publication? Let us know and earn a reward for your research.

Customer Reviews

Write a review, share your experiences with others and get rewarded !
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket
Product Name Cat. No. Applications Host Species Datasheet Price Add to Basket


The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy


Authors: Yu, Wei; Chen, Chunjuan; Cheng, Jidong

Cardiac hypertrophy can lead to heart failure and cardiovascular events and has become a research hotspot in the field of cardiovascular disease. Despite extensive and in-depth research, the pathogenesis of cardiac hypertrophy is far from being fully understood. Increasing evidence has shown that the transcription factor forkhead box protein O 1 (FoxO1) is closely related to the occurrence and development of cardiac hypertrophy. This review summarizes the current literature on the role and molecular mechanism of FoxO1 in cardiac hypertrophy. We searched the database MEDLINE via PubMed for available evidence on the effect of FoxO1 on cardiac hypertrophy. FoxO1 has many effects on multiple diseases, including cardiovascular diseases, diabetes, cancer, aging, and stem cell activity. Recent studies have shown that FoxO1 plays a critical role in the development of cardiac hypertrophy. Evidence for this relationship includes the following. (i) FoxO1 can regulate cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy and (ii) is controlled by several upstream signalling molecules (e.g. phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and sirtuins) and regulates many downstream transcription proteins (e.g. ubiquitin ligases muscle RING finger 1/muscle atrophy F-box, calcineurin/nuclear factor of activated T cells, and microRNAs). In response to stress or external stimulation (e.g. low energy, oxidative stress, or growth factor signalling), FoxO1 undergoes post-translational modification and transfers from the cytoplasm to nucleus, thus regulating the expression of a series of target genes in myocardium that are involved in cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy. (iii) Finally, targeted regulation of FoxO1 is an effective method of intervening in myocardial hypertrophy. The information reviewed here should be significant for understanding the roles of FoxO1 in cardiac hypertrophy and should contribute to the design of further studies related to FoxO1 and the hypertrophic response. It should also shed light on a potential treatment for cardiac hypertrophy.

Hysteresis of pyruvate phosphate dikinase from Trypanosoma cruzi


Authors: Gonzalez-Marcano, Eglys; Acosta, Hector; Quinones, Wilfredo; Mijares, Alfredo; Concepcion, Juan Luis

Trypanosoma cruzi, the causative agent of Chagas' disease, belongs to the Trypanosomatidae family. The parasite undergoes multiple morphological and metabolic changes during its life cycle, in which it can use both glucose and amino acids as carbon and energy sources. The glycolytic pathway is peculiar in that its first six or seven steps are compartmentalized in glycosomes, and has a two-branched auxiliary glycosomal system functioning beyond the intermediate phosphoenolpyruvate (PEP) that is also used in the cytosol as substrate by pyruvate kinase. The pyruvate phosphate dikinase (PPDK) is the first enzyme of one branch, converting PEP, PPi, and AMP into pyruvate, Pi, and ATP. Here we present a kinetic study of PPDK from T. cruzi that reveals its hysteretic behavior. The length of the lag phase, and therefore the time for reaching higher specific activity values is affected by the concentration of the enzyme, the presence of hydrogen ions and the concentrations of the enzyme's substrates. Additionally, the formation of a more active PPDK with more complex structure is promoted by it substrates and the cation ammonium, indicating that this enzyme equilibrates between the monomeric (less active) and a more complex (more active) form depending on the medium. These results confirm the hysteretic behavior of PPDK and are suggestive for its functioning as a regulatory mechanism of this auxiliary pathway. Such a regulation could serve to distribute the glycolytic flux over the two auxiliary branches as a response to the different environments that the parasite encounters during its life cycle.

Online Inquiry

Phone: *
E-mail Address: *
Technology Interest:
Type of Organization:
Service & Products Interested: *
Project Description:
Verification code
Click image to refresh the verification code.

Online Inquiry

  Interested in larger quantities ? request a quote!
  Protocol may be improved. Please feel free to contact us to obtain the latest version.!

Ordering Information

Payment methods we support:
Invoice / Purchase Order
Credit card

OUR PROMISE TO YOU Guaranteed product quality expert customer support

Inquiry Basket